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Ana Filipa Diońısio deserves a special word of acknowledgment for being a continued source of cheer and

inspiration.

Last but not the least, I would like to thank my family: my parents, Carlos and Maria, my brother Nuno and

my sister Sofia, for providing a constant encouragement and support, at many levels, and from a distance.

iii





Abstract

This study aims to establish design criteria that simultaneously meets the stochastic nature of the streamflow

regime in Portuguese rivers and the dependency between such regime and the mean annual flow depth, in

view of the preliminary design of the storage capacities of reservoirs. The data set consisted of 54 streamflow

samples in Portuguese rivers. To comply with the previously stated objectives a procedure was implemented

to generate annual and monthly synthetic streamflow series using, at the annual level, a probabilistic model

based on the random sampling of the log-Pearson III distribution, and, at the monthly level, a disaggregation

model, namely the method of fragments. For this purpose, a procedure was developed and tested for the

automatic definition of the classes of fragments, thus conferring greater generality and robustness to the

method. Such procedure was applied to generate a large number of synthetic series of monthly flows that

preserved the statistical characteristics of the samples. For different operating conditions regarding the

demand and performance, a simulation algorithm was applied to each synthetic series to estimate the storage

capacity that would be required if an artificial reservoir for water supply was built at the location pertaining

to each sample. The resulting collection of estimates of storage capacities were statistically analyzed using

the Gumbel distribution in order to estimate the design storage capacities with specified values of reliability,

defined as a non-exceedance probability. As a result, it was concluded that the design values of specific

storage capacities are related to the mean annual flow depth of the sample series with significant correlation

coefficients. The curves that express this relationship may be directly applied to the preliminary design of

the storage capacity of reservoirs in Portuguese rivers. It is assumed that similar curves can also be applied

in Southern European countries with hydrologic characteristics similar to those of Portugal.

Keywords: Reservoir capacity design, mean annual flow depth, synthetic streamflow series, method of

fragments, Gumbel law, log-Pearson III law.
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Resumo

O presente estudo visou estabelecer critérios fundamentados de projecto que simultaneamente atendem à

natureza estocástica do regime fluvial dos cursos de água de Portugal Continental e à dependência entre

tal regime e a altura do escoamento anual médio, tendo em vista o pré-dimensionamento de capacidades

úteis de albufeiras. Os dados de base utilizados foram constitúıdos por 54 amostras de escoamentos mensais

em rios portugueses. Para cumprir o anterior objectivo implementou-se um procedimento para gerar séries

sintéticas de escoamentos anuais e mensais, utilizando, ao ńıvel anual, um modelo probabiĺıstico baseado

na amostragem aleatória da lei log-Pearson III e, ao ńıvel mensal, um modelo de desagregação, designada-

mente o método dos fragmentos. Para o efeito, foi desenvolvida e testada uma metodologia de definição

automática das classes de fragmentos que reduz a intervenção subjectiva do modelador, conferindo maior

generalidade e robustez ao método. Tal metodologia foi aplicada para gerar um número elevado séries

sintéticas de escoamentos mensais, estatisticamente semelhantes às amostras. Considerando diferentes val-

ores para o fornecimento de água e para as condições desse fornecimento, estimaram-se, por aplicação de um

algoritmo de simulação a cada série sintética de escoamentos, as capacidades úteis que seriam requeridas se,

no local a que se refere cada amostra, fosse constrúıdo um reservatório destinado ao abastecimento de um

dado pedido uniforme da água. As estimativas assim obtidas no conjunto das séries sintéticas foram estatis-

ticamente analisadas por aplicação da lei de Gumbel, com estimação das regularizações espećıficas associadas

a diferentes garantias, entendidas como probabilidades teóricas de não-excedência. Em resultado do estudo

efectuado, concluiu-se que as regularizações espećıficas de que é necessário dispor em Portugal Continental se

relacionam com as alturas do escoamento anual médio com correlações notáveis, tendo-se estabelecido as cur-

vas que exprimem essa dependência. Tais curvas podem ser aplicadas directamente, em fases preliminares de

projecto, no dimensionamento de capacidades úteis de albufeiras criadas por barragens em rios portugueses.

Admite-se que tenha sentido desenvolver procedimentos análogos aos propostos em páıses do Sul da Europa,

com caracteŕısticas hidrológicas semelhantes às que ocorrem em Portugal.

Palavras-chave: Dimensionamento da capacidade útil de albufeiras, altura do escoamento anual médio,

séries sintéticas de escoamentos, método dos fragmentos, lei de Gumbel, lei log-Pearson III.
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1 Introduction

1.1 Scope

The design of the storage capacity of artificial reservoirs is a classic problem in water resources manage-

ment. From a hydrological point of view, its solution consists of finding the relationships between the inflow

characteristics, the reservoir capacity, the controlled release and the performance of the system.

In Mainland Portugal, due to the irregularity of the streamflow regime, the supply of surface water is generally

made from artificial reservoirs. Frequently, at preliminary stages of planning of water resources systems, it is

necessary to make an expeditious evaluation of the feasibility of providing a given supply in order to match

a certain demand. The design criteria available for making this evaluation are admittedly scarce.

Previous research on the subject was carried out in Portugal by Portela & Quintela (2000, 2001, 2002a,b,

2005a,b, 2006a,b), who established that the mean annual flow depth, H, constitutes a powerful parameter for

characterizing the streamflow variability in Portuguese rivers. Furthermore, those authors also showed that

the mean annual flow depth is related, with significant correlations, to the storage capacities of reservoirs.

In the understanding that a sample of observed streamflows comprises a single event, namely the historical

one, synthetic series obtained from that sample are considered as alternate events with a probability of

occurrence that is admittedly equal to that of the observed event. The utilization of synthetic streamflow

series is an important and useful tool for practitioners and researchers on water resources management, in

that it enables the assessment of the uncertainty associated with natural hydrological phenomena in general,

and with the flow regime in particular. By means of statistical analysis, it is possible to assign probabilistic

criteria to the performance of the hydraulic systems in whose analysis synthetic flow series were applied.

The generation of synthetic series can be made simultaneously at different time levels, using a disaggregation

technique. These techniques encompass a model for generating values at a given time level, namely the year,

combined with a model to disaggregate these values into a lower level, namely the month, while achieving

a preservation of the main statistical characteristics of the samples at the different time levels, such as the

means, the standard deviations, and the skewness coefficients.
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1.2 Objectives

Taking into account the relationships identified in previous studies regarding the dependency between the

mean annual flow depth and the storage capacities of artificial reservoirs located in Mainland Portugal, the

main objective of the research carried out in this dissertation was to provide more reliable and consistent

criteria for the design of such storage capacities by taking into account the stochastic behaviour of the natural

inflows and by expressing those capacities as a function of:

(a) the demanded supplies of water;

(b) the performance of the reservoirs while supplying those demands;

(c) the reliability associated with the supply of that demand, with the desired performance.

For accomplishing the proposed objective, a storage-yield procedure, based on the simulation algorithm,

was applied to synthetic streamflow data, with the aim of estimating the reliability associated with the

performances of water resources system.

For obtaining the aforementioned synthetic data, a methodology was conceived and tested for generating

annual and monthly synthetic streamflow series, integrating a probabilistic generation model at the annual

level, and a disaggregation model - the method of fragments - at the monthly level. For the purpose of

applying that methodology to a large number of observed streamflow samples, with different lengths and

statistical characteristics, a procedure was developed and tested for the automatic definition of the classes of

fragments, resulting in a much more general and robust model, thus reducing the need of intervention of the

modeler.

A data set utilized in the research consisted of 54 monthly streamflow samples from gauging stations geo-

graphically spread over Mainland Portugal.

1.3 Organization of the document

The present document is organized in six chapters. In Chapter 1 a brief introduction is made on the scope

and objectives of the research.

In Chapter 2 a state-of-the-art review is made on the background investigation and theoretical concepts that

support the research carried out in this dissertation.

In Chapter 3 the data set used in the research is presented and characterized. As previously stated such set

comprehended 54 samples of monthly streamflows.
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Chapter 4 describes of the proposed methodology for generating streamflow series and the reservoir

storage-yield procedure applied to the data set.

The analysis and discussion of the obtained results is carried out in Chapter 5. The huge amount of informa-

tion that supports such results should be stressed. In fact, in addition to the samples themselves, the results

are supported by 1200 synthetic monthly streamflow series with a length equal to that of the corresponding

sample, for each one of the 54 samples. As the average length of the streamflow samples is close to 35 years,

a total of approximately 27 million monthly streamflows were estimated and analyzed in order to produce

relationships between storage capacities, water demands, and reliability of the water resources systems.

Finally, Chapter 6 presents a summary and the conclusions achieved in this study.
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2 Background

2.1 Introduction

In this chapter the main concepts that support the research carried out in the study of the storage capacities

of artificial reservoirs are presented. Firstly a brief state-of-the-art analysis is made regarding the role of

the mean annual flow depth as a regionalization parameter in hydrology. This concept is the basis of the

regional study of reservoir storage made by Portela & Quintela (2006b), which, in turn, is the starting point

for the research carried out in this dissertation. Then, a review of storage theory regarding the design of the

storage capacities, the criteria of reservoir performance, and the measurement of the uncertainty associated

with storage estimates is made. Finally, an overview of time-series modeling is presented, followed by a brief

description of the methods utilized for generating synthetic time-series.

2.2 The mean annual flow depth as a regionalization parameter

Various studies carried out by Portela & Quintela (2000, 2001, 2002a,b, 2005a,b, 2006a,b), analyzed the

relation between the mean annual flow depth, H, i.e., the mean annual flow expressed as water depth over

the watershed, and the temporal irregularity of the flow regimes of Portuguese rivers. The data used in those

studies were long samples of the mean daily flow (the longest available records) at 24 stream gauging stations

at a first stage Portela & Quintela (2000, 2001, 2002a,b), and at a later stage, at 54 stream gauging stations

Portela & Quintela (2005a,b, 2006a,b). The gauging stations used were geographically spread over Mainland

Portugal. The studies show that the mean annual flow depth is closely related to the temporal (within-year,

as well as annual) variability of the flow regime. Then, H is a powerful parameter for the regionalization of

hydrometric information (Portela & Quintela, 2006a,b).

The close relation between the temporal variability of the annual flow and the mean annual flow depth was

demonstrated by the dependency that is verified between the coefficient of variation, CV , of the annual flows,

and the mean annual flow depth. The coefficient of variation of a series is a measure of its relative variability,

and is expressed as a ratio between the standard deviation, s, and the mean of the series. The general form

achieved for the equation that expresses the relationship between CV and H is given by Equation (2.1).
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CV = αH
−β

(2.1)

As shown in Table 2.1, as the coefficient α and the exponent β take positive values, Equation (2.1) shows that

the variability of the annual streamflow increases as H decreases. Then, the annual flows are more irregular

when the watershed is located in a dryer area. In Mainland Portugal the dryer watersheds are mainly located

in the Southern and Northeastern regions.

Table 2.1: Relationship between the coefficient of variation, CV of annual flows, and the mean annual flow
depth, H. Values of α and β.

α = 4.895 β = 0.354 (24 gauging stations) (Portela & Quintela (2000, 2001, 2002a,b))
α = 4.285 β = 0.324 (54 gauging stations) (Portela & Quintela (2005a,b, 2006a))

The relationship between the relative temporal variability of within-year flows and H was described by the

mean square deviation, MSDi, of the monthly and daily flows expressed in a dimensionless form:

MSDi =

√√√√√√

γ∑

j=1

(
Hi,j −Hi

Hi

)2

γ
(2.2)

where:

• at a monthly level γ = 12 and the indexes i and j denote the year and month, respectively, and:

MSDi is the mean square deviation of the monthly flow in year i, in a dimensionless form;

Hi is the mean monthly flow depth in year i;

Hi,j is the flow depth in month j of the year i;

• at a daily level, γ = 365, i denotes the year, j the day and:

MSDi is the mean square deviation of the daily flow in year i, in a dimensionless form;

Hi is the mean daily flow depth in year i;

Hi,j is the flow depth in day j of the year i.

For each of the gauging stations, the number of values of MSDi is equal to the number of years with flow

records. By calculating the mean, MSD, and the standard deviation, sMSD, of the MSDi series at the

54 gauging stations, and by plotting those statistics as a function of the mean annual flow depth of the

corresponding station, Portela & Quintela (2005a,b) obtained the curves presented in Figure 2.1.
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Figure 2 – Averages and standard deviations of the mean quadratic deviation series (dimensionless 
forms) of the monthly flows (left) and of the daily flows (right). 

By this way it was shown that the mean annual flow depth also provides a measure of the relative 

temporal variability of the monthly and daily flows, becoming attenuated as H  increases, that is to 
say, as the region is more humid. In accordance, [5], [7], [8], [9], [10] and [11] concluded that the 
non-dimensional annual, monthly and daily flow series at a river section having a mean annual flow 

depth H  can be transposed for an ungauged river section providing this last section has a mean 

annual flow depth close enough to H .

If 1H  and 2H denote the mean annual flow depths, the latter, at a given river section (section 1) 

having flow records and, the former at an ungauged river section (section 2), and if 1H  and 2H  are 
close enough, the following relationships can be applied at the monthly and daily levels in order to 
obtain the flow series at section 2, [8], [9], [10] and [11]:
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In the previous equations the river sections are identify by the indexes 1 and 2; j represents a month 

or a day of year i and H =flow depth; Q mean discharge; flow volume; mean annual volume; 

and modQ modulus. The previous equations can be applied to the annual level by replacing the two 

indexes i and j by a unique year index. [10] and [11] also include the comparison between observed 
and transposed monthly and daily flows at several stream gauging stations, as exemplified in 
Figures 3 and 4.

In the first figure the observed annual and monthly flows at the stream gauging station of 
Entradas (27J/01), with a watershed area of 52 km

2
, are compared with those obtained for the same 

stream gauging station by transposition of the flows at the stream gauging station of Monte the 
Ponte (27J/01), with a much larger watershed area, namely of 701 km

2
. Despite the considerable 

difference between the two watersheds under consideration it is evident the very good adjustment 
between observed and transposed flows at Entradas (27J/01). In Figure 4 the transposition was 
accomplished from a smaller watershed – Castro Daire (08J/01) with the area of 291 km

2
 – to a larger 

one – Vinhais-Quinta da Ranca (03P/01) with the area of 455 km
2
. Also very good adjustments 

between observed and transposed flows were achieved. 

Figure 2.1: Averages and standard deviations of the mean square deviation series, in a dimensionless form,
of the monthly flows (left) and of the daily flows (right) (reproduced from Portela & Quintela, 2006b).

Those curves show that, in average, as H increases, the relative temporal variability of the within-year flow

regime decreases. Likewise, the dispersion of the mean square deviation around the average also decreases.

Then it is shown that H also provides a measure of the relative temporal variability of within-year flows,

which becomes attenuated as H increases, hence dryer regions have more irregular within-year flows.

Thus, Portela & Quintela (2000, 2001, 2002a,b, 2005a,b) conclude that, in Mainland Portugal, annual,

monthly and daily flows at watersheds with close enough mean annual flow depths are similar, provided

those series are expressed in dimensionless forms. These authors also believe that this similarity can be gen-

eralized to European regions having similar climatic characteristics, with emphasis to the Southern European

zones (Portela & Quintela, 2006b).

2.3 Design of the storage capacity of reservoirs

2.3.1 Description of the problem and definition of terms

The design of the storage capacity of a reservoir is an old problem in water resources management. The

unconstrained form of this problem poses the question: “how large must the storage capacity of a reservoir

be in order to provide a steady supply of water of a demanded magnitude?”. In this form, the problem may

not have a solution. An obvious constraint that must be made to the problem is that the demanded supply

must not be greater than the mean discharge of the stream, for it is impossible for a reservoir of any size to

supply more water than it receives over a long period of time. Another constraint that must be made is that

a reservoir may not be able to guarantee an uninterrupted provision even if the demand is smaller than the

mean inflow discharge, due to the stochastic nature of the streamflow process. Because there is no record of
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future inflows, the traditional approach to this problem has been to determine the storage capacity of the

reservoir on the basis of the past streamflow record, and assume that the future will not be much different

from the past (Klemeš, 1987).

The solution of the reservoir storage problem depends on several factors, such as the variability of the natural

streamflows, the size of the demand, and the desired performance of the reservoir in meeting such demand.

While it may be formulated in many different manners, it may be reduced to a basic problem: finding the

relationship between inflow characteristics, reservoir capacity, controlled release, and the desired performance

(McMahon & Adeloye, 2005, p. 42). The methods employed to estimate a solution of a reservoir storage

problem are denominated reservoir storage-yield procedures.

The terminology involved in reservoir storage analyses may differ from author to author, hence it is necessary

to categorize the terms used in this text as to which interpretation is adopted:

• The storage capacity, or active storage of a reservoir is the volume of water stored above the level of the

lowest offtake. It is the total volume of water in the reservoir subtracted of the dead storage (volume

of water below the lowest offtake).

• Carryover storage is the volume of water stored at the end of one year being transferred to the following

year.

• Yield is the regulated flow supplied from a reservoir during a given time period.

• The demand, demanded volume, or target, is the desired yield of the reservoir. The synonymous term

draft will be used in this text, for expressing the demand percentage of the mean inflow volume.

• Spill is regarded as the uncontrolled release of water from a reservoir. It occurs when the water stored

in the reservoir is above the full supply level.

The terminology concerned with the performance of the reservoir will be addressed in 2.3.3.

2.3.2 Reservoir capacity-yield procedures

McMahon & Mein (1978) propose the classification of reservoir capacity-yield procedures into three main

groups:

1. Critical period techniques.

2. Probability matrix methods.

3. Procedures based on generated synthetic data.
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The methods of the third group are, however, essentially the same as in the first two groups, the only difference

being that the input streamflows are synthetically generated rather than historical samples. McMahon &

Adeloye (2005, p. 6), note that all techniques could be based on generated data.

The probability matrix methods are related to Moran dam theory (Moran, 1959). These methods will not

be used in the dissertation, hence they will not be presented in this section. An exhaustive analysis of these

methods may be found in McMahon & Mein (1978) and in McMahon & Adeloye (2005).

Critical period methods use historical or generated inflows and a projected demand to simulate the volumetric

behaviour of a reservoir, that is, the time series of storage fluctuations versus time. Although there is no

unique definition for critical period, it may be defined as the period during which the reservoir goes from

full to empty without spilling (McMahon & Mein, 1978). In this thesis two types of critical period methods

are presented: cumulative flow curve techniques and simulation (or behaviour) analysis. An up-to-date and

more complete study of critical period methods for determining the storage capacity of artificial reservoirs

can be made by consulting McMahon & Adeloye (2005) and Guimarães (2005).

Cumulative flow curve techniques

Cumulative flow curve techniques were originally developed as graphic methods that used the curve of accu-

mulated flows of the streamflow time series to determine the storage capacity of a reservoir. This concept of

design was introduced by Rippl (1883), and marks the beginning of rigorous reservoir storage theory (Klemeš,

1987; McMahon et al., 2007a). Before Rippl’s paper, the design of the size of a reservoir was governed by the

sole criterion that it should be large enough to meet the demand in the driest year of the historical record.

Rippl recognized the inadequacy of such approach and pointed out that the reservoir may not be filled up

between two successive dry years and that a sequence of scarce streamflow periods would produce a negative

cumulative effect, hence the reservoir inflow must be considered as a time series, rather than a separate treat-

ment of annual inflows (Klemeš, 1987). At the time of Rippl’s publication, numerical computations were done

manually and were time consuming, and graphical methods were the main tool for increasing computational

efficiency, therefore Rippl’s method represented a considerable achievement.

The objective of a cumulative flow curve technique is to determine the minimum storage capacity, C, necessary

to guarantee a full supply of a given demand, D, of a reservoir with a given inflow time series, Q, of length

N . The methods have two basic assumptions: (i) that the reservoir is full at time zero, and (ii) that the

historical inflow sample is representative of the future inflows.

The following is a description of four different graphical methods. It should be noted that while the graphical

representation may differ from method to method, in the end the numerical results are concurrent. Each

method’s algorithm is essentially identical, and may be adapted for execution on a computer.
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• Rippl’s method consists of the following (Fig: 2.2):

1. Draw the net cumulative inflow curve - the difference between cumulative inflows, Q and Qt, and

outflows or demand, D and Dt, t being the time period index and N the total number of time

periods:

∑
(Q−D) =

N∑

t=1

(Qt −Dt), t = 1, 2, ..., N (2.3)

2. Moving backward from the end of the curve, locate the first local minimum, m1.

3. Locate the second local minimum, m2.

4. Locate the local maximum, M1, between m1 and m2, and calculate the difference (M1 −m1).

5. Repeat the steps 2 through 4 until the beginning of the curve is reached.

6. Calculate the storage capacity as C = max(Mk −mk), with k = 1, 2, ...,K, where K is the total

number of local minimums.

The main disadvantage of this approach is that the net cumulative inflow curve must be completely

redrawn every time the demanded yield is altered.

Figure 2.2: Rippl’s method for determining the storage capacity of a reservoir, C, fed by the inflow series Q,
necessary to continuously supply the target demand D.

• Mass inflow curve method, or simply mass curve method (Figure 2.3). This method is commonly, but in-

correctly, referred to as ‘Rippl’s method’ or ‘Rippl diagram’ (McMahon & Adeloye, 2005, p. 66;Klemeš,

1987). It may be consulted on many textbooks, such as McMahon & Mein (1978), under that denomi-

nation. The method consists of the following steps, where the variables have the previously presented

meaning:
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1. Draw the mass or cumulative inflow curve:

∑
Q =

N∑

t=1

Qt, t = 1, 2, ..., N (2.4)

2. Draw a line of the cumulative demands:

∑
D =

N∑

t=1

Dt, t = 1, 2, ..., N (2.5)

3. Superimpose on the mass curve parallels of the demand line, tangential to each bump of the mass

inflow curve.

4. Measure the successive differences between the parallels and the mass curve.

5. Determine the reservoir capacity corresponding to the maximum of the differences measured on

the last step.

This method has the advantage of avoiding to redraw the mass curve every time a different demand is

considered.

Figure 2.3: Mass inflow curve method for determining the storage capacity of a reservoir, C, fed by the
inflow series Q, necessary to continuously supply the target demand D.

• Residual mass curve method, proposed by Sudler (1927) (Figure 2.4). The steps of the method’s

application are the following, where except for Q, the variables have the previously presented meaning,

Q being the mean of the inflow series.:

1. Draw the residual mass curve, obtained by subtracting the mean of the inflow series, Q, to each

of the series’ entry:
∑

(Q−Q) =

N∑

t=1

(Qt −Q), t = 1, 2, ..., N (2.6)
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2. Superimpose on the residual mass curve, parallels of the residual cumulative demand line, obtained

by subtracting the mean of the inflow series to the cumulative demand line:

∑
(D −Q) =

N∑

t=1

(Dt −Q), t = 1, 2, ..., N (2.7)

3. Measure the successive differences between the parallels and the residual mass curve.

4. Determine the reservoir capacity corresponding to the maximum of the differences measured on

the last step.

Figure 2.4: Residual mass curve method for determining the storage capacity of a reservoir, C, fed by the
inflow series Q, necessary to continuously supply the target demand D.

• Sequent peak algorithm (SPA). This method, proposed by Thomas & Burden (1963), is very similar to

Rippl’s method, the only difference being that it moves forward from peak to peak, while Rippl’s moves

backwards (Figure 2.5):

1. Draw the net cumulative inflow curve - the difference between cumulative inflows and outflows

according to Equation (2.3);

2. Moving forward from the beginning of the curve, locate the first local maximum, M1.

3. Locate the second local maximum, M2.

4. Locate the local minimum, m1, between M1 and M2, and calculate the difference (M1 −m1).

5. Repeat the steps 2 through 4 from peak to peak until the end of the curve is reached.

6. Calculate the storage capacity C = max (Mk −mk), with k = 1, 2, ...,K, where K is the total

number peaks.
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Figure 2.5: Sequential peak algorithm for determining the storage capacity of a reservoir, C, fed by the
inflow series Q, necessary to continuously supply the target demand D.

There is a limitation inherent to the mass curve methods described, related to the assumption that the

reservoir will be full at the beginning of its exploration. This practice tends to underestimate the storage

capacity of the reservoir since it is seldom feasible (or even possible) to start the operation of a reservoir

when its storage is at full capacity. To mitigate this problem, a two-cycle computation may be applied to

the methodology, that is, given an N year period with records of streamflows, consider the inflow series Qt,

with t = 1, 2, ..., 2N , and QN+1 = Q1, QN+2 = Q2, ..., Q2N = QN . Thomas & Burden (1963) incorporated

the two-cycle computation into the sequent peak algorithm.

Figures from 2.2 to 2.5 represent applications of cumulative curve techniques considering uniform demands.

However, it is possible to consider a seasonal structure of the draft. The designer may opt for a yearly,

monthly, or daily time-step for the discretization of the inflow time series. Technical literature recommends

the adoption of a monthly time-step for storage-yield procedures (McMahon & Adeloye, 2005, p. 24).

Simulation

The simulation method applied to the design of the storage capacities of artificial reservoirs is based on the

replication of the reservoir exploitation during a period of time equal to the length of the inflow time series.

The technique allows for considering the evaporation and other losses from the reservoir and, unlike the

cumulative curve methods, it is useful in determining the performance of the reservoir, because it allows the

designer to consider restrictions on the water supply when the reservoir is depleted, while the cumulative

methods presuppose a complete fulfillment of the demand. Simulation is a trial and error method in which
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a guess is made about the capacity, the exploitation of the reservoir is made for this capacity, and finally

relevant performance measure are evaluated (McMahon & Adeloye, 2005, p. 114).

The simulation is performed along consecutive time periods, each one with the constant duration ∆t. An

initial value for the storage capacity is assumed, and the reservoir is considered to be full at time zero. The

stored volume in each new time step calculated for each time step is computed by applying the mass balance

equation:

St+1 = St +Qt −Dt − Et + Pt − Lt (2.8)

with the restriction:

0 ≤ St+1 ≤ C (2.9)

where St and St+1 are the storage volumes at the beginning of time periods t and t + 1, respectively, with

t+1 = t+∆t. The remaining variables represent changes in the storage volume during the tth time period: Qt

is the inflow volume, Dt is the target demand, Et represents the losses by evaporation, Pt is the precipitation

over the reservoir, and Lt are other losses from the reservoir.

The simulation method is suited to make a behavioural analysis of the performance of the reservoir. This

subject will be addressed in 2.3.3.

If this method is applied under the same assumptions as any of the cumulative curve methods, that is to say,

considering the evaporation and other losses as null, and a guaranteed full supply, the results will coincide

with those provided by the cumulative curve methods.

2.3.3 Reservoir performance criteria

In the design of the storage capacity of an artificial reservoir, it is important to evaluate how the system

will perform under the expected supply demands and hydrologic conditions during its operating life. The

criteria applied to measure the expected performance of a reservoir aim at characterizing particular aspects

of unsatisfactory operating conditions, namely during low flow periods (McMahon & Adeloye, 2005, p. 12).

The most common criterion used for assessing the performance of a reservoir is reliability. Though there is

no single definition of the reliability of a reservoir, it can be considered as a measure of the dependability

of the system’s requirements being met (Nagy et al., 2002, p.68). The most common definition presented in

the technical literature (McMahon & Mein, 1978, p. 17; McMahon & Adeloye, 2005, p. 13; Nagy et al., 2002,

p. 68; McMahon et al., 2007b;McMahon et al., 2007a) defines the reliability, RT , as the percentage of time

units in which the specified demand is met:
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RT =

(
1− Nr

N

)
× 100 (2.10)

where Nr is the number of periods where the supply is not able to meet the demand and restrictions on

water use are made (failure in the supply) and N is the total number of time periods in the analysis. Then

Nr/N is the empirical probability of failure of the demand being met, and RT is its complement (non-failure

probability). It should, however, be stressed that this concept deals with an empirical frequency instead of

a theoretical probability.

The quality of the information given by the reliability as formulated in Equation (2.10) is questionable,

mainly because it masks two important aspects of the behaviour of the system: the duration of the water

shortage event (i.e.: a continuous sequence of failures), and the volume shortfall associated with each failure.

In water supply, it is better to cope with a long series of minimal shortfalls that could easily be absorbed by

the system, than to cope with a single shortfall of a crippling magnitude (McMahon & Adeloye, 2005, p. 88),

yet failures are statistically weighed independently of the volume shortage. It is also a non-realistic concept,

for in the real operation of a reservoir, restrictions on water supply would be applied long before it would be

permitted to be empty.

The concept of reliability expressed by Equation (2.10) will be referred to as time-based reliability for the

remainder of this dissertation. It is the performance criterion used by Portela & Quintela (2006a,b).

An alternative definition of reliability is the volumetric reliability proposed by McMahon & Mein (1978, p. 17)

and McMahon & Adeloye (2005, p. 15):

RV =




1−

Nr∑

t=1

(Dt −D′t)

N∑

t=1

Dt



× 100 (2.11)

where Dt and D′t are, respectively, the target demand and the actual supply during the tth time period, and

the remaining variables have the same meaning as before. Note that if Dt is 100% satisfied, Dt = D′t.

Another reservoir performance criterion is the vulnerability which measures the severity of shortfalls, based

on the assumption that the period with the largest shortfall will be the most severe in terms of its impacts on

water supply. Hashimoto et al. (1982) define the vulnerability, η, of a reservoir as the average of the maximum

shortfalls occurring in each of the continuous failure sequences (McMahon & Adeloye, 2005, p. 17):

η =

Nfs∑

k=1

max (shk)

Dk

Nfs
(2.12)
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where Nfs is the total number of failure sequences, max shk is the maximum water shortage in the kth failure

sequence, and Dk is the supply demand during the same sequence. The division by the demand, Dk is merely

a formality in order to obtain a dimensionless descriptor.

The criterion to evaluate the ability of recovery of a reservoir from a failure sequence is the resilience. There

are many definitions of the resilience (McMahon & Adeloye, 2005, p.16), but the most widely adopted was

the one proposed by Hashimoto et al. (1982):

ϕ =
Nfs
Nr

(2.13)

where ϕ is the resilience, Nfs has the same meaning as in Equation (2.12), and Nr has the same meaning as

in Equation (2.10). By this definition, the resilience is the reverse of the average duration of failure sequences

(Nr/Nfs), consequently the longer the average duration of failure sequences, the more difficult it is for a

reservoir to recover from a failure.

The concepts of time-based reliability, volumetric reliability, vulnerability, and resilience provide information

on different characteristics of the behaviour of a reservoir. In fact:

• time-based reliability characterizes the frequency of failures;

• volumetric reliability and vulnerability characterize the magnitude of the shortfall volumes;

• resilience characterizes the duration of the water shortage events.

Each of these characteristics should be considered when making a proper assessment of the performance of

a reservoir, yet they cannot by ascertained by a single criterion (Vaz, 1984, p. 165) .

It is important to note that not all reservoir storage-yield procedures can be subjected to an analysis under

these criteria. A cumulative flow curve method, for instance, designs a reservoir for the full supply of the

target demand, i.e., a failure-free performance. The simulation method is, of the foregoing procedures, the

sole which is suited to make a behavioural analysis.

McMahon et al. (2006) made an extensive examination of different reservoir performance metrics, using both

historical and stochastically generated streamflow data as inflows to hypothetical reservoirs in four rivers –

Earn river in the United Kingdom, Hatchie river in the United States, Richmond river in Australia and the

Vis river in South Africa.

One of the conclusions of that study is that the vulnerability η and the resilience ϕ, as formulated by Equations

(2.12) and (2.13), respectively, do not have a monotonic behaviour with an increasing storage capacity for

a fixed yield, nor with an increasing yield with a fixed storage capacity. This results from the effect of

averaging in both criteria’s definition: the vulnerability metric η can increase with a reduction of the number

of failures sequences Nfs without a significant reduction of the numerator of Equation (2.12), meaning that,
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for a fixed reservoir capacity, decreasing the draft would result in a more vulnerable system; the resilience

estimator ϕ suffers from the similar averaging in Equation (2.13) as in Equation (2.12). The resulting trends

of vulnerability and resilience, relative to the variation of storage capacity with a fixed draft, or vice-versa, are

distorted and do not have the same qualities as the reliability metrics RT and RV , which have a monotonic

formulation. This phenomenon is exemplified in Figure 2.6, based on a monthly streamflow sample (from

October 1955 to September 2004) from the Cidadelhe gauging station at the Côa river in Portugal, considering

a fixed draft of 60% and increasing values of the storage volume. In order to simplify the comparison of the

trends displayed by all four performance metrics in Figure 2.6, the vulnerability, η, and the resilience, ϕ, are

represented as percentages rather than fractions.
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Figure 2.6: Côa river in Portugal. Comparison of four reservoir performance metrics for increasing storage
capacities and a fixed draft of 60% (RT - time-based reliability; RV - volumetric reliability; η -

vulnerability; ϕ - resilience).

Furthermore, McMahon et al. (2006) studied the hypothesis that the resilience ϕ and the vulnerability η

have a complementary relationship. Those authors applied behaviour analyses to the previously mentioned

four rivers (Earn, Hatchie, Richmond, and Vis) considering different values of the storage capacities and

demanded drafts, in a total of 31 reservoir storage-yield combinations. By plotting the values of vulnerability

against the values of resilience, McMahon et al. (2006) obtained the results of Figure 2.7.
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The fitted lines in Figure 2.7 are:

• historical data: η = 1.019− 1.028ϕ (R2 = 0.97);

• stochastic data: η = 1.034− 1.048ϕ (R2 = 0.98);

which those authors stated that can both be approximated to η ≈ 1.00 − ϕ, which implies that only one of

them should by explicitly estimated during storage-yield analyses. R2 stands for the determination coefficient.

T.A. McMahon et al. / Journal of Hydrology 324 (2006) 359–382

Figure 2.7: Relationship between vulnerability, η, and resilience, ϕ, for hypothetical reservoirs located on
four rivers, based on a behaviour analysis for both historical and generated streamflows (reproduced from

McMahon et al., 2006).

McMahon et al. (2007b) repeated this analysis, based on a much larger data set than that used in McMahon

et al. (2006) (a global set of 729 unregulated rivers with at least 25 years of continuous data). This analysis

considered the storages equal to the mean annual flows and values of the draft of 30%, 50% and 75% of the

mean annual flow. Figure 2.8 shows the values of vulnerability plotted against the values of resilience and

the curves fitted to those results.

The analysis presented in Figure 2.8 suggests that the complementary relationships between these two metrics

(slope of −1.00) is not particularly strong. Furthermore McMahon et al. (2007b) conclude that the line of

best fit through all the data in the figure has a slope of −0.76 and that the relationship is not very linear.
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dimensionless vulnerability is plotted against

resilience for the monthly time series based on the rivers

from the global data set assuming a hypothetical reservoir

equal in capacity to the mean annual flow and target drafts

of 30%, 50% and 75%. As noted elsewhere (McMahon et al.,

2006) the global rivers show that the two metrics, dimen-

sionless vulnerability and resilience, are approximately

complementary. Based on this much larger data set than

McMahon et al. (2006) the line of best fit

through all the data in the figure has a slope of �0.76, sug-

ically regulated rivers on a global basis. Based on the anal-

yses described herein we have identified the following

conclusions:

1. The literature that deals with the characteristics of

hypothetically regulated global rivers is sparse.

2. We have examined the variations of unregulated and

regulated flow characteristics among continents and

between Australia–southern Africa and the rest of

the world.
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Comparison of dimensionless Hashimoto vulnerability versus Hashimoto resilience estimates (for storages equal to mean

annual flow and for 30%, 50% and 75% targeted draft) (analysis is based on monthly flows).

Southern Africa 48 0.46 (0.34–0.76) 0.16 (0.11–0.28) 0.86 (0.52–0.95)

South America 100 0.69 (0.51–0.89) 0.23 (0.097–0.39) 0.55 (0.33–0.80)

South Pacific 16 0.86 (0.78–0.93) 0.42 (0.25–0.50) 0.47 (0.24–0.56)

Australia–southern 162 0.50 (0.33–0.77) 0.17 (0.13–0.32) 0.83 (0.53–0.95)

Rest of world 567 0.70 (0.53–0.88) 0.25 (0.17–0.43) 0.61 (0.36–0.86)

All rivers 729 0.67 (0.44–0.88) 0.24 (0.14–0.40) 0.69 (0.38–0.89)

Values in parenthesis are 10th and 90th percentile.

Figure 2.8: Relationship between vulnerability, η, and resilience, ϕ, for hypothetical reservoirs located on
729 rivers, for storages equal to mean annual flow and for 30%, 50% and 75% target draft (reproduced from

McMahon et al., 2007b).

2.3.4 Uncertainty associated with estimates of storage capacities

If the demanded draft of a reservoir is above a certain percentage of the mean annual flow, the reservoir

will need resort to over-year regulation. This means that the designed storage capacity should allow for the

inflows of a wet year to be transferred to dry years. The occurrence of over-year regulation implies that

within-year storage is a function, not only of the inflow of that year, but also of the storage that is carried

over from the previous year. Consequently an inflow time series constitutes a single event in a reservoir

storage problem. Under this understanding, the use of a single streamflow series, as is the historical sample,

cannot result in more than one estimate of the reservoir capacity.

Synthetic streamflow series represent alternative events to the historical streamflow series. The subject of

generation of synthetic flow series will be addressed in Section 2.4.

The application of a storage-yield procedure to each inflow series, having defined a specific yield and per-

formance, produces a single estimate of the reservoir storage capacity. A collection of estimates of such

capacities enables the application of statistical analysis to the definition of the design storage capacity. By

this approach, the probability distribution of the storage volumes can be identified. Then, to each collection

of estimates of the storage capacity, C, has a probability density function, f(c), and a probability distribution

function F (c) = P (C ≤ c), the reliability is the probability that the required storage capacity required not

be greater than c∗, hence reliability = F (c∗). The probability of failure is the probability that the storage

capacity required will be greater than C∗, hence risk = 1− F (c∗).

It is important not to misinterpret the concept of reliability as a non-exceedance probability of the storage

capacity estimates, with the concept of reliability as a reservoir performance criterion, such as time-based

reliability, RT , as formulated in Equation (2.10). Because RT is based upon a frequency, and not upon a
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Figure 2.9: Procedure for determining the uncertainty associated with estimates of the storage capacity.

theoretical probability distribution, it is an empirical reliability. This distinction is made because of the need

to differentiate this notion of reliability from the probability of non-exceedance, F , of a given storage capacity.

F is a theoretical reliability based on the statistical treatment of the storage estimates obtained by applying

a behaviour analysis to a large number of synthetic flow series. Therefore, in the context of the design of

the storage capacity, these two notions of reliability will be denominated empirical reliability (ER), and

theoretical reliability (TR), and will be expressed as percentages, for the remainder of this dissertation.

2.3.5 Previous research on reservoir storage in Portugal

As was introduced in Section 2.2, Portela & Quintela (2000, 2001, 2002a,b, 2005a,b) demonstrated that

the mean annual flow depth, H, is intrinsically related with the temporal variability of the streamflows in

Portuguese rivers, therefore it constitutes a a powerful regionalization parameter for hydrometric data.

Using a data set of monthly streamflow samples in 24 gauging stations (Portela & Quintela, 2002a,b), and,

later, 54 gauging stations (Portela & Quintela, 2006a,b), those authors applied the simulation algorithm to

the historical samples estimate the specific storage capacities, for fixed values of time-based reliability and

draft, and plotted the results against the mean annual flow depth of each sample.

The results of these studies allowed the authors to establish the following relationship:

Θ

(
C

Q
,
D

Q
,ER,H

)
= 0 (2.14)

where, C
Q

is the specific storage1, D
Q

is the draft, ER is the empirical reliability (time-based reliability, RT ,

was used), and H the mean annual flow depth.

1The storage volume is often represented as a percentage of the mean annual inflow. This normalized quantification of
the storage estimate is denominated specific storage. For the purpose of simplifying the notation, the specific storage will
be designated by the fraction C

Q
, albeit representing a percentage. Likewise, the draft, which is also often represented as a

percentage o the mean annual inflow, will be represented by D
Q

.
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Figure 2.10 shows the results obtained in Portela & Quintela (2006b) for an empirical reliability of 90%

and the different drafts considered. It is apparent that, for each pair of values of empirical reliability and

draft, the specific storage of the reservoir increases as the mean annual flow depth decreases, seeing that the

streamflow regime has more variability in these cases, according to the relationships presented in Item 2.2.

For each reliability-draft combination, those authors obtained equations of the following type with significant

correlation coefficients:

C

Q
= αH

β
(2.15)

where the coefficient α is positive and the exponent β is negative.
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Figure 2.10: Estimates of the specific storages obtained by Portela & Quintela (2006b) for 54 gauging
stations. Empirical reliability of 90% and drafts from 20% to 90%.

Figure 2.11 shows the results obtained in Portela & Quintela (2006b) for the empirical reliability of 85% as

well as the curves that represent Equation (2.15) for the considered drafts.

Table 2.2 contains the values of the parameters α and β and of the correlation coefficients, c.c., of the curves

obtained by Portela & Quintela (2006b).

Portela & Quintela (2006a,b) concluded that those curves could be applied to Portuguese rivers to make a

preliminary evaluation of the storage capacity required by a reservoir to supply a target draft with a given

empirical reliability.
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Figure 2.11: Estimates of the specific storages obtained by Portela & Quintela (2006b) for 54 gauging
stations. Empirical reliability of 85% and drafts from 20% to 90%. Fitted curves of the type of Equation

(2.15).

Table 2.2: Results obtained by Portela & Quintela (2006b). Parameters α and β and correlation
coefficients, c.c., of the curves defined by Equation (2.15) for different values of empirical reliability, ER,

and target draft, D
Q

.

ER (%)
D
Q

(%) α β c.c.

95

90 2141.8 -0.430 -0.747
80 3134.7 -0.556 -0.800
60 3309.8 -0.682 -0.843
50 2824.2 -0.723 -0.861
40 2093.3 -0.748 -0.869
20 1086.7 -0.835 -0.888

90

90 2360.4 -0.500 -0.786
80 2805.4 -0.591 -0.817
60 2443.0 -0.687 -0.855
50 1618.6 -0.681 -0.862
40 1124.0 -0.693 -0.881
20 755.1 -0.829 -0.880

80

90 1618.1 -0.537 -0.853
80 1512.1 -0.580 -0.861
60 851.5 -0.591 -0.863
50 679.9 -0.613 -0.881
40 621.4 -0.669 -0.891
20 1352.3 -1.025 -0.855
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2.4 Generation of synthetic flow series

2.4.1 An overview of time series modeling

The process of mathematical modeling in Hydrology can take two approaches: a deterministic approach, and

a non-deterministic one. Deterministic models have no element of chance, there is a unique correspondence

between a given input and the resulting outputs. Non-deterministic models on the other hand, allow for

randomness to induce indeterminacy in the model, so for the same given input the model may take several

different paths and produce a different output, though some paths are more probable than others. Determin-

istic models can be further divided into two groups: empirical models which provide cause-effect relationships

between input and output variables and are based on experience, and physically based models which aim to

reproduce the physical laws to which the natural processes are subjected to.

Likewise, non-deterministic models are also divided into two groups: probabilistic models when the hydrologic

process has a purely random behaviour, and the temporal and/or spatial sequence of the variables may

be disregarded; stochastic models, when besides the random component, the process has a deterministic

component that allows for the variables’ sequence to be preserved.

The aforementioned categorization of mathematical hydrologic models is summarized in Figure 2.12. It is a

widely adopted categorization, but it should be noted that some authors consider probabilistic models as a

subgroup of stochastic models. This categorization was presented in Quintela & Portela (2002) and is the

one adopted in this dissertation.

Mathematical hydrologic models





Deterministic

{
Empirical
Physically based

Non-Deterministic

{
Probabilistic
Stochastic

Figure 2.12: Categorization of mathematical hydrologic models, after Quintela & Portela (2002)

Synthetic time series generation is an important tool for practitioners and researchers on water resources

management and planning, namely in the field of reservoir storage design. The use of synthetic inflow series

in reservoir storage-yield procedures is important for estimating the reliability associated with each particular

value of storage capacity.

Consider an observed series of N years of annual streamflow, Xt, with t = 1, 2, ..., N . Although the streamflow

process is continuous in time, it is usual to consider its observations as discrete variables (Salas et al., 1980,

p. 2).

The aim of time series modeling is to find a model that reproduces the statistical properties of the sample.
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For instance, if X is normal with mean µ and variance σ2, the mathematical model that represents this series

can be written as

Xt = µ+ σεt , t = 1, 2, ... (2.16)

where εt is normal with mean zero and variance one and ε1, ε2... are random and Xt is a function only

of the random variable εt; thus Xt is also random and Equation (2.16) is a non-deterministic probabilistic

model with the parameters µ and σ. The model would become stochastic if εt in Equation (2.16) would be

represented by the stochastic model

εt = φε(t−1) + ξt (2.17)

where ξt is an independent series with mean zero and variance (1−φ2) and φ is the parameter of the model.

εt is a function of both ξt and the same variable ε at a time t−1, thus it is a stochastic series. In this case the

parameters of the model of Xt would be µ, σ and φ. Since the parameters of the above models are constant

in time, the models are stationary sequential generation models. Non-stationary models use time-varying

parameters.

A good practice of time series modeling requires a diagnostics check of the chosen type and form of the model.

This is done by comparing the synthetic series to the observed sample and determining if the main statistics

have been preserved. The synthetic series are considered to be valid alternative sequences to the sample

series if the sample’s statistics are preserved, thus enabling the use of the generated series for the purpose

for which they were needed (Guimarães, 2005, p. 81). If M synthetic series are generated, the comparison

of the sample series’ statistic, θ, with the synthetic series’ statistics, θ̂(m) (m = 1, 2, ...M), can be made by

obtaining the mean
(
θ̂
)

and standard deviation
(
sθ̂
)

of θ̂ and by establishing a confidence interval of (1−α)

for θ,

]
θ̂ − z1−α/2 sθ̂; θ̂ + z1−α/2 sθ̂

[
(2.18)

where z1−α/2 is the 1 − α/2 quantile of the Normal standard distribution, α being the significance level. If

the statistic θ of the sample series belongs to that interval, it is considered to be preserved in the synthetic

series.

For the design of the storage capacity of a reservoir, as was the objective of this research, monthly synthetic

flow series were utilized. The generation of the monthly streamflow series can take a two-level approach,

comprehending a generation model for the annual synthetic series, and a disaggregation model to obtain the

corresponding monthly flow series.
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2.4.2 Generation models

The selection of an appropriate model for generating synthetic time series depends on the characteristics of

the sample.

If the sample series is built upon a variable independent in time, the generation of synthetic series can be

carried out with a non-deterministic probabilistic model, such as the simple Monte Carlo sampling procedure.

This procedure consists of a random sampling of a probability density function as input of the mathematical

model to produce a number of possible outcomes (Ribeiro, 1996, p. 72, Guimarães, 2005, p. 65).

In the case that the sample series is dependent in time, the model used should be a stochastic model. The

most adopted stochastic models are:

• Autoregressive models, AR(p), and periodic autorregressive models, PAR(p), of order p, are short

memory models capable of preserving low-order moments of the sample series (Guimarães, 2005, p. 30);

• Autorregressive-moving average models, ARMA(p,q), and periodic autorregressive-moving average mod-

els, PARMA(p,q), add a moving average component of order q to the AR models. These are long

memory models suitable for series with high order correlations.

AR(p) and ARMA(p,q) models are applicable to annual streamflow series, while PAR(p) and PARMA(p,q)

models are more suited for monthly streamflow series. An exhaustive study of these and other stochastic

models can me made by consulting the textbooks by Salas et al. (1980) and Box et al. (1994).

2.4.3 Disaggregation models

The models presented in 2.4.2 have been designed to preserve the statistical characteristics of each sample. A

model applied to a sample of annual flows is directed to preserve the statistics of the annual flows. Likewise,

a model applied to a sample of monthly flows is directed to preserve the statistics of the monthly flows.

However, the foregoing models cannot preserve the statistics simultaneously at both time levels (year and

month). For instance, if the generated monthly flows are aggregated to obtain the corresponding annual

flows, there is no assurance that the historical annual statistics would be preserved. In fact, they are seldom

preserved (Santos, 1983, p. 2).

Disaggregation techniques are aimed to preserve the statistical properties of generated time series at more

than one level. These techniques consist of a combination of a model for generating values of a variable at a

given time level, and a model for disaggregating these values into a lower level. More often, these levels have

a temporal nature, the upper level being, for example, the year and the lower level the months.

There are a number of disaggregation models available. The following is a brief reference of some of these

models.
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• The Valencia and Shaake method, proposed by Valencia & Schaake Jr (1972) (Silva, 1989, p. 13) was

the first formal disaggregation model to be developed and has become widely accepted in stochastic

hydrology. The basis of the method is the simultaneous generation of the monthly or seasonal flows of a

given year, by disaggregation of the respective annual flow. This model has the attributes of preserving

the annual and seasonal statistics and the additive property, that is, the aggregation of the generated

seasonal flows result in the generated annual flows. This model has, however, some shortcomings,

namely, its large number of parameters.

• The step disaggregation model proposed by Santos (1983) is based on a sequential disaggregation of

annual flows, preserving the additive quality of the monthly flows. This model has the advantage of

using a minimum number of parameters to preserve the covariance structure of the seasonal series.

• The method of fragments, proposed by Svanidze in 1961 (Svanidze, 1980), was very popular within

the former USSR, but did not have similar popularity elsewhere (Santos, 1983, p. 19). This method

considers the within-year distribution of monthly flows and assumes that two years with a similar annual

flow value will have a similar within-year distribution of the monthly flows. The method of fragments

is capable of generating monthly flow series while preserving monthly and annual statistics and the

additive property.
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3 Streamflow data

The data set used in research consists of continuous monthly and equivalent annual streamflow records from

53 gauging stations, geographically spread over Mainland Portugal. The locations of the stations are shown

in Fig. 3.1, on page 29. The 53 gauging stations were selected from a list of 54 stations used in previous

studies carried out by Portela & Quintela (2005a,b, 2006a,b), however the length of some of the streamflow

samples has been extended for the current data set. Although Moinho do Bravo has a long streamflow

sample (between 1934/35 and 1989/90), there is a considerably long gap in the records (between 1959/60

and 1975/76). Consequently the streamflows preceding and the ones succeeding this gap were considered as

two separate streamflow samples. As a result, the total number of streamflow samples used was 54. The

hydrological year (starting on October 1st) was adopted as the annual time-step. Table 3.1 summarizes the

names of the gauging station, the location, the period with records and the catchment area for each sample.

The Code column lists the reference of the gauging stations in the SNIRH online database (Sistema Nacional

de Informação de Recursos Hı́dricos - http://snirh.pt).

The average length of the samples is close to 35 years, while the shortest and the longest samples respectively

have the lengths of 11 (Pte. da Ota) and 73 years (Pte. Juncais). The catchment area varies from 4 to

3718 km2 (Louçainha and Castanheiro, respectively).

The coefficient of variability CV of the annual flows was computed for each sample and a regression analysis

was made to determine the relationship between CV and H, adopting the form given by Equation (2.1). The

graphical representation of this analysis as well as the equation that expresses the relationship, including

the correlation coefficient, cc, are shown in Fig. 3.2, on page 30. The figure includes the comparison of the

curve with the ones previously established by Portela & Quintela (2005a,b, 2006a) based on a data set of

54 gauging stations (of which, 53 stations were used in the current research, though with slightly different

recording periods), and by Portela & Quintela (2000, 2001, 2002a,b), based on 24 gauging stations. The

latter curves were presented in Table 2.1, on page 6.
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Table 3.1: Streamflow samples: gauging stations, period of records of continuous annual and monthly data,
and catchment area.

Sample No.
Gauging station Period of records

Area (km2)
Code Name Catchment/Watercourse (number of years)

1 26J/01 Albernoa Guadiana/Terges 1970/71 - 1994/95 (25) 177
2 27J/01 Monte da Ponte Guadiana/Cobres 1959/60 - 1993/94 (35) 701
3 24H/01 S.Domingos Sado/Riba Algalé 1934/35 - 1958/59 (25) 59
4 24L/01 Amieira Guadiana/Degebe 1944/45 - 1990/91 (47) 1474
5 24H/03 Torrão do Alentejo Sado/Xarrama 1961/62 - 1989/90 (29) 465
6 19D/04 Pte. da Ota Tejo/Riba de Ota 1979/80 - 1989/90 (11) 56
7 19C/02 Pte. Barnabé Tejo/Alenquer 1979/80 - 1991/92 (13) 114
8 25G/02 Moinho do Bravo (1) Sado/Riba Corona 1934/35 - 1958/59 (25) 218
9 24I/01 Odivelas Sado/Riba de Odivelas 1934/35 - 1969/70 (36) 431
10 25G/02 Moinho do Bravo (2) Sado/Riba Corona 1976/77 - 1989/90 (14) 218
11 18L/01 Couto de Andreiros Tejo/Riba de Seda 1974/75 - 1992/93 (19) 244
12 12E/01 Pte. Azenha Nova Mondego/Riba de Foja 1975/76 - 1987/88 (13) 51
13 30F/02 Vidigal Algarve/Riba do Farelo 1938/39 - 1963/64 (26) 19
14 19M/01 Monforte Tejo/Riba de Avis 1955/56 - 1988/89 (34) 136
15 31K/03 Bodega Algarve/Riba de Alportel 1952/53 - 1988/89 (37) 132
16 06O/03 Q. das Laranjeiras Douro/Sabor 1942/43 - 2005/06 (64) 3464
17 29L/01 Monte dos Fortes Guadiana/Riba Odeleite 1961/62 - 1992/93 (32) 288
18 23I/01 Flor da Rosa Sado/Xarrama 1934/35 - 1965/66 (32) 278
19 28L/02 Vascão Guadiana/Riba Vascão 1960/61 - 1982/83 (23) 403
20 08O/02 Cidadelhe Douro/Côa 1955/56 - 2003/04 (49) 1685
21 30G/01 Mte. dos Pachecos Algarve/Riba de Odelouca 1961/62 - 1982/83 (22) 386
22 18E/01 Pte. Freiria Tejo/Maior 1976/77 - 1989/90 (14) 184
23 10P/01 Castelo Bom Douro/Côa 1957/58 - 2003/04 (47) 897
24 13F/02 Pte. Casével Mondego/Ega 1975/76 - 1989/90 (15) 146
25 21C/01 Pte. Pinhal Tejo/Riba de Loures 1977/78 - 1988/89 (12) 79
26 06M/01 Castanheiro Douro/Tua 1958/89 - 2003/04 (46) 3718
27 05M/01 Murça Douro/Tinhela 1970/71 - 2003/04 (34) 265
28 11I/06 Pte. Tábua Mondego/Mondego 1937/38 - 1978/79 (42) 1552
29 10K/01 Pte. Sta Clara-Dão Mondego/Dão 1921/22 - 1988/89 (68) 177
30 10L/01 Pte. Juncais Mondego/Mondego 1918/19 - 1990/91 (73) 604
31 10L/01 Caldas S. Gemil Mondego/Dão 1952/53 - 1989/90 (38) 617
32 04J/05 Pte. Cavez Douro/Tâmega 1957/58 - 2005/06 (49) 1951
33 08L/01 Quinta do Rape Douro/Távora 1976/77 - 2003/04 (28) 170
34 03N/01 Rebordelo Douro/Rabaçal 1955/56 - 2002/03 (48) 857
35 12H/03 Pte. Mucela Mondego/Alva 1938/39 - 1989/90 (52) 666
36 09G/01 Pte. Vale Maior Vouga/Caima 1935/36 - 1972/73 (38) 188
37 11H/03 Açude Saimilo Mondego/Dão 1939/40 - 1974/75 (36) 1371
38 06I/02 Pte. Canavezes Douro/Tâmega 1955/56 - 1986/87 (32) 3180
39 03K/01 Vale Giestoso Douro/Beça 1957/58 - 2005/06 (49) 77
40 10M/03 Videmonte Mondego/Mondego 1975/76 - 1996/97 (22) 121
41 08J/01 Castro Daire Douro/Pavia 1945/46 - 2003/04 (59) 291
42 07I/04 Cabriz Douro/Riba S. Paio 1966/67 - 1996/97 (31) 17
43 09I/02 Pte. Vouzela Vouga/Vouga 1956/57 - 1973/74 (18) 649
44 03P/01 Vinhais - Qt.Ranca Douro/Tuela 1955/56 - 1996/97 (42) 455
45 04J/04 Cunhas Douro/Beça 1949/50 - 2005/06 (57) 338
46 06K/01 Ermida - Corgo Douro/Corgo 1956/57 - 2005/06 (50) 291
47 11M/01 Pai Diz Mondego/Mondego 1973/74 - 1995/96 (23) 50
48 05K/01 S. Marta do Alvão Douro/Louredo 1955/56 - 2005/06 (51) 52
49 09H/01 Pedre Ribeiradio Vouga/Vouga 1962/63 - 1979/80 (18) 928
50 13H/03 Louçainha Mondego/Simonte 1959/60 - 1983/84 (25) 4
51 08H/02 Fragas da Torre Douro/Pavia 1945/46 - 2005/06 (61) 660
52 17F/02 Pte. Nova Tejo/Almonda 1976/77 - 1989/90 (14) 102
53 11L/01 Manteigas Tejo/Zêzere 1948/49 - 1995/96 (48) 28
54 03H/04 Covas Cávado/Homem 1955/56 - 1973/74 (19) 116

28



Figure 3.1: Mainland Portugal. Location of the 53 stream gauging stations. Contour map of the mean
annual flow depth, after Portela & Quintela (2002b).

The curves represented in Figure 3.2 do not differ significantly from each other. Hence the hypothesis that

the mean annual flow depth H is closely related to the temporal variability of the flow regime, in accordance

with the various studies carried out by Portela & Quintela (2000, 2001, 2002a,b, 2005a,b), is validated for the

current data set. The values of the mean, standard deviation, coefficient of variation, and skewness coefficient

of annual flow depths (H, sH , CV , and gH , respectively), as well as the values of the mean and standard

deviation of the annual flow volumes (X and sX , respectively), of each streamflow sample are presented in

Table 3.2, on page 31.

29



CV (−)

H (mm)

Portela & Quintela (2000, 2001, 2002a,b)
CV = 4.895 H −0.354

c.c. = 0.975

Portela & Quintela (2005a,b, 2006a)
CV = 4.285 H −0.324

c.c. = 0.900

CV = 3.903 H −0.307

c.c. = 0.885
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Figure 3.2: Relationship between the coefficients of variation of annual flows, CV , and the mean annual flow
depth, H. Results based on the current data set (blue curve and the corresponding dots), and previous

results (green and red curves).

According to Quintela (1967) (Silva, 1989, p. 51), the annual streamflow series of Mainland Portugal river

is an independent time series if the hydrological year (starting on October 1st) is adopted as a time-step,

provided that an analysis of the correlation structure of the sample does not invalidate this assumption. The

correlation structure of a time-series may be investigated by computing the lag-k autocorrelation coefficient

rk, which was computed, for each streamflow sample, using Equation (A.6), presented in Appendix A, defined

by Salas et al. (1980, p. 38). If rk = 0 for k 6= 0, then the time-series is independent in time. However,

due to the variability of the annual streamflows, rk is expected not to be equal to zero but to fluctuate

around zero, resulting in the need to use statistical criteria to decide if the rk values differ significantly from

zero. Anderson (1942) defined the probability limits for the serial correlation of an independent series, for a

confidence level of 95% (Salas et al., 1980, p. 49):

rk(95%) =
−1± 1.96

√
N − k − 1

N − k (3.1)

where N is the sample length and k is the lag.

Table 3.3 contains the values of the lag-one and lag-two autocorrelation coefficients, and the corresponding

Anderson (1942) probability limits.
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Table 3.2: Streamflow samples: Main statistical characteristics of the annual flows.

Sample No. Name H (mm) sH (mm) X(dam3) sX (dam3) gH,X (-) CV (-)

1 Albernoa 90.4 104.0 16002 18402 1.869 1.150
2 Monte da Ponte 127.1 121.6 89087 85245 1.068 0.957
3 S.Domingos 131.5 96.5 7761 5694 0.324 0.734
4 Amieira 145.3 142.1 214233 209450 0.995 0.978
5 Torrão do Alentejo 148.0 121.1 68809 56304 0.572 0.818
6 Pte. da Ota 150.5 118.7 8428 6645 0.709 0.788
7 Pte. Barnabé 162.4 128.7 18513 14672 0.931 0.793
8 Moinho do Bravo (1) 166.9 111.7 36389 24346 0.158 0.669
9 Odivelas 182.7 133.6 78752 57575 0.352 0.731
10 Moinho do Bravo (2) 190.9 147.0 41624 32048 0.110 0.770
11 Couto de Andreiros 191.6 180.4 46749 44017 0.802 0.942
12 Pte. Azenha Nova 210.6 115.7 10739 5903 0.364 0.550
13 Vidigal 227.2 137.6 4318 2614 0.275 0.605
14 Monforte 230.8 173.5 31387 23590 0.645 0.752
15 Bodega 233.7 169.7 30852 22401 0.617 0.726
16 Q. das Laranjeiras 245.7 185.0 851107 640723 1.087 0.753
17 Monte dos Fortes 259.1 181.5 74632 52283 0.692 0.701
18 Flor da Rosa 265.2 194.4 73727 54052 0.204 0.733
19 Vascão 296.4 229.4 119459 92449 0.674 0.774
20 Cidadelhe 300.9 199.4 506950 336010 0.386 0.663
21 Mte. dos Pachecos 331.7 287.6 128046 111015 0.919 0.867
22 Pte. Freiria 343.0 238.5 63111 43887 0.515 0.695
23 Castelo Bom 347.5 208.8 311726 187310 0.456 0.601
24 Pte. Casével 369.8 227.4 53988 33202 0.451 0.615
25 Pte. Pinhal 376.6 267.7 29749 21149 1.388 0.711
26 Castanheiro 377.1 240.7 1401978 895045 1.069 0.638
27 Murça 400.3 297.5 106080 78831 1.768 0.743
28 Pte. Tábua 422.0 218.4 654987 339001 0.543 0.518
29 Pte. Sta Clara-Dão 428.4 290.8 75824 51469 1.668 0.679
30 Pte. Juncais 472.1 285.5 285150 172424 1.287 0.605
31 Caldas S. Gemil 475.8 270.0 293547 166582 0.663 0.567
32 Pte. Cavez 519.2 324.7 1012890 633543 1.198 0.625
33 Quinta do Rape 531.4 329.9 90343 56082 0.388 0.621
34 Rebordelo 598.1 353.3 512542 302796 1.030 0.591
35 Pte. Mucela 607.4 312.5 404554 208138 0.360 0.514
36 Pte. Vale Maior 625.4 373.6 117572 70235 1.220 0.597
37 Açude Saimilo 633.8 292.2 868884 400606 0.643 0.461
38 Pte. Canavezes 690.3 332.5 2195048 1057224 0.774 0.482
39 Vale Giestoso 704.1 430.6 54215 33159 1.152 0.612
40 Videmonte 736.4 388.0 89107 46952 0.055 0.527
41 Castro Daire 736.8 393.5 214396 114522 0.891 0.534
42 Cabriz 773.8 337.5 13155 5738 0.677 0.436
43 Pte. Vouzela 787.9 398.6 511352 258679 1.144 0.506
44 Vinhais - Qt.Ranca 791.6 345.1 360177 157043 0.568 0.436
45 Cunhas 823.5 414.4 278348 140064 0.711 0.503
46 Ermida - Corgo 888.1 434.7 258443 126489 0.823 0.489
47 Pai Diz 909.7 401.6 45485 20079 -0.007 0.441
48 S. Marta do Alvão 923.0 408.1 47996 21222 0.884 0.442
49 Pedre Ribeiradio 973.1 508.6 903007 471998 0.567 0.523
50 Louçainha 979.3 372.4 3917 1490 0.267 0.380
51 Fragas da Torre 994.1 502.1 656081 331357 0.944 0.505
52 Pte. Nova 1139.3 519.8 116204 53017 -0.489 0.456
53 Manteigas 2058.5 719.5 57638 20145 0.899 0.350
54 Covas 2214.1 937.2 256832 108713 0.132 0.423
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Table 3.3: Samples of annual streamflows. Lag-one and lag-two serial correlation coefficients.

Sample No. Name
Lag-k serial correlation coefficients (α)
lag-one, r1 lag-two, r2

1 Albernoa 0.0720 (-0.4333 - 0.3500) 0.0883 (-0.4432 - 0.3562)
2 Monte da Ponte 0.0897 (-0.3606 - 0.3017) -0.1033 (-0.3663 - 0.3057)
3 S.Domingos -0.0958 (-0.4333 - 0.3500) -0.3942 (-0.4432 - 0.3562)
4 Amieira 0.1386 (-0.3076 - 0.2641) -0.1758 (-0.3111 - 0.2667)
5 Torrão do Alentejo 0.1378 (-0.3994 - 0.3280) -0.0561 (-0.4072 - 0.3331)
6 Pte. da Ota -0.1736 (-0.6880 - 0.4880) -0.0419 (-0.7271 - 0.5049)
7 Pte. Barnabé 0.1695 (-0.6250 - 0.4584) -0.0745 (-0.6544 - 0.4726)
8 Moinho do Bravo (1) -0.1284 (-0.4333 - 0.3500) -0.3573 (-0.4432 - 0.3562)
9 Odivelas -0.0246 (-0.3551 - 0.2980) -0.3860 (-0.3606 - 0.3017)
10 Moinho do Bravo (2) 0.1173 (-0.5992 - 0.4454) 0.0549 (-0.6250 - 0.4584)
11 Couto de Andreiros 0.2917 (-0.5045 - 0.3934) -0.1894 (-0.5200 - 0.4024)
12 Pte. Azenha Nova -0.1104 (-0.6250 - 0.4584) -0.0820 (-0.6544 - 0.4726)
13 Vidigal 0.0418 (-0.4241 - 0.3441) -0.3654 (-0.4333 - 0.3500)
14 Monforte 0.0479 (-0.3663 - 0.3057) -0.0768 (-0.3723 - 0.3098)
15 Bodega 0.0431 (-0.3499 - 0.2943) -0.3253 (-0.3551 - 0.2980)
16 Q. das Laranjeiras -0.0540 (-0.2608 - 0.2291) 0.0190 (-0.2630 - 0.2308)
17 Monte dos Fortes 0.1809 (-0.3786 - 0.3140) -0.1509 (-0.3852 - 0.3185)
18 Flor da Rosa -0.0894 (-0.3786 - 0.3140) -0.3140 (-0.3852 - 0.3185)
19 Vascão 0.3201 (-0.4537 - 0.3628) -0.1256 (-0.4650 - 0.3698)
20 Cidadelhe -0.0731 (-0.3008 - 0.2591) 0.1122 (-0.3041 - 0.2616)
21 Mte. dos Pachecos 0.3175 (-0.4650 - 0.3698) -0.2390 (-0.4772 - 0.3772)
22 Pte. Freiria 0.2670 (-0.5992 - 0.4454) 0.2275 (-0.6250 - 0.4584)
23 Castelo Bom -0.0919 (-0.3076 - 0.2641) 0.0929 (-0.3111 - 0.2667)
24 Pte. Casével 0.1141 (-0.5762 - 0.4333) -0.0278 (-0.5992 - 0.4454)
25 Pte. Pinhal 0.1520 (-0.6544 - 0.4726) -0.2658 (-0.6880 - 0.4880)
26 Castanheiro -0.1164 (-0.3111 - 0.2667) 0.1188 (-0.3148 - 0.2694)
27 Murça -0.1033 (-0.3663 - 0.3057) 0.0519 (-0.3723 - 0.3098)
28 Pte. Tábua 0.0297 (-0.3267 - 0.2780) -0.0793 (-0.3310 - 0.2810)
29 Pte. Sta Clara-Dão 0.0197 (-0.2526 - 0.2227) 0.0690 (-0.2546 - 0.2243)
30 Pte. Juncais -0.0055 (-0.2433 - 0.2155) -0.0731 (-0.2450 - 0.2169)
31 Caldas S. Gemil 0.0646 (-0.3449 - 0.2908) 0.0239 (-0.3499 - 0.2943)
32 Pte. Cavez -0.0133 (-0.3008 - 0.2591) 0.0177 (-0.3041 - 0.2616)
33 Quinta do Rape 0.0287 (-0.4072 - 0.3331) -0.0564 (-0.4154 - 0.3385)
34 Rebordelo -0.1034 (-0.3041 - 0.2616) 0.0696 (-0.3076 - 0.2641)
35 Pte. Mucela 0.2310 (-0.2914 - 0.2521) -0.0930 (-0.2944 - 0.2544)
36 Pte. Vale Maior 0.2998 (-0.3449 - 0.2908) 0.0852 (-0.3499 - 0.2943)
37 Açude Saimilo -0.0452 (-0.3551 - 0.2980) -0.2056 (-0.3606 - 0.3017)
38 Pte. Canavezes 0.0147 (-0.3786 - 0.3140) -0.1201 (-0.3852 - 0.3185)
39 Vale Giestoso -0.0418 (-0.3008 - 0.2591) 0.0814 (-0.3041 - 0.2616)
40 Videmonte -0.0143 (-0.4650 - 0.3698) -0.1468 (-0.4772 - 0.3772)
41 Castro Daire -0.1014 (-0.2724 - 0.2379) 0.0314 (-0.2749 - 0.2398)
42 Cabriz -0.0125 (-0.3852 - 0.3185) -0.0608 (-0.3921 - 0.3231)
43 Pte. Vouzela -0.0204 (-0.5200 - 0.4024) -0.0756 (-0.5369 - 0.4119)
44 Vinhais - Qt.Ranca -0.1009 (-0.3267 - 0.2780) 0.0045 (-0.3310 - 0.2810)
45 Cunhas -0.0385 (-0.2774 - 0.2417) 0.0981 (-0.2801 - 0.2437)
46 Ermida - Corgo -0.0471 (-0.2975 - 0.2567) 0.0094 (-0.3008 - 0.2591)
47 Pai Diz -0.0344 (-0.4537 - 0.3628) -0.2009 (-0.4650 - 0.3698)
48 S. Marta do Alvão -0.0928 (-0.2944 - 0.2544) 0.0063 (-0.2975 - 0.2567)
49 Pedre Ribeiradio -0.1136 (-0.5200 - 0.4024) 0.0862 (-0.5369 - 0.4119)
50 Louçainha 0.0482 (-0.4333 - 0.3500) -0.1096 (-0.4432 - 0.3562)
51 Fragas da Torre -0.0510 (-0.2676 - 0.2343) 0.0049 (-0.2699 - 0.2360)
52 Pte. Nova -0.0435 (-0.5992 - 0.4454) -0.1072 (-0.6250 - 0.4584)
53 Manteigas 0.0648 (-0.3041 - 0.2616) 0.0275 (-0.3076 - 0.2641)
54 Covas 0.2572 (-0.5045 - 0.3934) 0.1956 (-0.5200 - 0.4024)

(α) The values in parentheses represent the Anderson (1942) probability limits for a confidence level of 95%, as defined in
Equation (3.1).
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The annual streamflows in gauging stations Pte. Vale Maior and Odivelas (samples no. 36 and 27), re-

spectively) present rk values that are slightly outside of the 95% confidence interval (for k = 1 and k = 2,

respectively). It was assumed that this was due to the samples’ variability of the annual streamflows and it

was admitted that the hypothesis of temporal independence of annual streamflows was valid for those two

samples. The remaining streamflow samples all display rk values within the corresponding 95% confidence

intervals.
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4 Methodology

4.1 Generation of synthetic monthly streamflow series

4.1.1 General considerations

The methodology applied to generate synthetic monthly streamflow series consisted of a two-level approach,

comprehending a generation model for the annual synthetic series, and a disaggregation model to obtain the

corresponding monthly flow series.

In Chapter 3, the temporal independence of the annual streamflows at the several gauging stations, while

adopting the hydrological year, was confirmed (Table 3.2), hence the modeling of the annual flow series used

a probabilistic model. The model is based on the random sampling of the probability density function of the

log-Pearson III law, which is the Pearson III law applied to the logarithms of the random variable. Because

this distribution can only take values between 0 and∞, the generation of negative flows is naturally avoided.

The log-Pearson III law has a flexible distribution, assuming a number of different shapes depending on the

mean, variance and skewness of the sample, hence the treatment of skewed data is assured (Chow et al.,

1988, p. 375).

The disaggregation of the generated annual flows into monthly flows used the method of fragments, proposed

by Svanidze in 1961 (Santos, 1983). A brief description of this model is presented in Section 2.4.3.

Sections 4.1.2 and 4.1.3 describe the generation model and the disaggregation model, respectively, used to

generate annual and monthly streamflow series with the lengths equal to that of the samples.

Guimarães (2005, p. 175) indicates that the number of generated series, M , in reservoir storage estimation

studies, should be 1200. This indication was adopted in the methodology proposed in this dissertation.

Naturally, in order to obtain M synthetic series, the described methodology must be carried out M times for

each sample.

Given that the mean length of the samples is 35 years, an average of 500 000 monthly flows were generated

for each sample, which results in a total of nearly 30 million monthly and annual flows generated for the 54

samples.
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4.1.2 Generation of annual streamflows

The model for generating annual flows consists of a random sampling of the log-Pearson III distribution,

which is the Pearson III distribution applied to the logarithms of the flows, that is, if ln(X) follows the

Pearson III distribution, then X follows the log-Pearson III distribution. The first step of the model is then

to determine the series of logarithms of the annual flows:

Wi = ln(Xi + c) (4.1)

where Wi is the series of the natural logarithms of the annual flows, Xi. The constant c was added to the

annual flows to avoid the occurrence of null flows to which the logarithmic transformation is not applicable.

This constant adopted a fixed value of c = 0.0001 in order to minimize the effect that its addition has on the

characteristics of the samples.

In fact, rather than annual flows, the statistical model generates logarithms of annual flows. The method of

moments was used to determine the statistical parameters of each sample of logarithms of the annual flows,

namely the mean, W , the standard deviation, sW , and the skewness coefficient, gW , according to Equations

(A.1), (A.2) and (A.4) in Appendix A (the latter two are unbiased estimators).

The synthetic series of N logarithms of annual flows Ŵ are generated according to the following expression

Ŵi = W + ζisW (4.2)

where ζi is the probability factor of the Pearson III distribution which may be obtained by applying the

Wilson-Hilferty transformation (Arsénio, 2003, p. 50; Naghettini & Pinto, 2007, p. 321) to the zi random

variables. The Wilson-Hilferty transformation is given by the following equation, where i = 1, ..., N :

ζi =

{[gW
6

(
zi −

gW
6

)
+ 1
]3
− 1

}
2

gW
(4.3)

In the previous equation, zi designates the ith normally distributed random variable z, with mean zero and

variance one:

z ∼ N (0, 1) (4.4)

The values of zi were obtained using the built-in function RANDN in Matlab, which uses a PRNG (PseudoRan-

dom Number Generator) - Marsaglia’s ziggurat algorithm - which generates numbers drawn from a normal

distribution with mean zero and standard deviation one (the period is approximately 264) (MathWorks,

2008). As an example, Figure 4.1 shows fifty numbers generated by this algorithm. The sequence of numbers

drawn by a PRNG is determined by the initial state of the generator. Setting the generator to the same

fixed state allows computations to be repeated; while setting the generator to different states leads to unique

computations. The state of the PRNG does not change any statistical properties of the drawn numbers. The

initial state of the PRNG can be set using a seed state. To insure that the PRNG is starting from a different
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state on each run, a different seed was assigned for each streamflow sample, and the PRNG was reset to that

seed at the beginning of the generation model for said sample. It is important not to reset the state of the

PRNG after each series is generated, otherwise the M series would be identical. Table 4.1 shows the seed

assigned to each streamflow sample.

Figure 4.1: Fifty random Gaussian numbers, with mean zero and variance one, generated using Marsaglia’s
Ziggurat algorithm.

Table 4.1: Pseudorandom number generator seed numbers assigned to each sample.

Sample No. Name Seed No. Sample No. Name Seed No.
1 Albernoa 535646 28 Pte. Tábua 796525
2 Monte da Ponte 379587 29 Pte. Sta Clara-Dão 517609
3 S.Domingos 293555 30 Pte. Juncais 520968
4 Amieira 359503 31 Caldas S. Gemil 762340
5 Torrão do Alentejo 606021 32 Pte. Cavez 99434
6 Pte. da Ota 257589 33 Quinta do Rape 904016
7 Pte. Barnabé 351194 34 Rebordelo 145591
8 Moinho do Bravo (1) 178293 35 Pte. Mucela 223848
9 Odivelas 863914 36 Pte. Vale Maior 687465
10 Moinho do Bravo (2) 226977 37 Açude Saimilo 836139
11 Couto de Andreiros 590645 38 Pte. Canavezes 813847
12 Pte. Azenha Nova 710596 39 Vale Giestoso 36539
13 Vidigal 145024 40 Videmonte 849561
14 Monforte 342105 41 Castro Daire 281855
15 Bodega 297686 42 Cabriz 142423
16 Q. das Laranjeiras 147535 43 Pte. Vouzela 701025
17 Monte dos Fortes 913973 44 Vinhais - Qt.Ranca 389499
18 Flor da Rosa 967751 45 Cunhas 661656
19 Vascão 250960 46 Ermida - Corgo 927758
20 Cidadelhe 459484 47 Pai Diz 114505
21 Mte. dos Pachecos 633042 48 S. Marta do Alvão 726129
22 Pte. Freiria 298262 49 Pedre Ribeiradio 901758
23 Castelo Bom 144756 50 Louçainha 279357
24 Pte. Casével 581073 51 Fragas da Torre 163983
25 Pte. Pinhal 717723 52 Pte. Nova 813399
26 Castanheiro 342669 53 Manteigas 451579
27 Murça 994234 54 Covas 344959

37



It should be noted that, when the skewness is zero, ζ is equal to z, that is, the log-Pearson III distribution

takes the shape of the Log Normal law. This characteristic of the log-Pearson III distribution also insures

the treatment of non-skewed data.

By inversion of the logarithmic transformation, and subtraction of the constant c, the synthetic series of

annual flows are obtained:

X̂i = eŴi − c (4.5)

The model is carried out M times until there are M synthetic annual flow series are generated: X̂
(m)
i , with

m = 1, 2, ...,M , M being fixed on 1200, as previously justified.

4.1.3 Monthly disaggregation of streamflows

The method of fragments considers that the within-the-year distribution of streamflows is identical in years

with close values of annual flow volumes. In this method, for a given year k the observed monthly flows are

divided by the corresponding annual flow volume, Xk, the resulting set of twelve standardized monthly flows

constitutes the fragment pertaining to the year k, φk:

φk =
Xk,j

Xk
=

[
Xk,1

Xk

Xk,2

Xk
· · · Xk,11

Xk

Xk,12

Xk

]
(4.6)

where Xk,j are the monthly flows (j = 1, 2, ..., 12).

The application of the method of fragments requires that the fragments are constituted and assembled into

classes beforehand. For the constitution of the array of fragments, [φ], the annual flows must previously be

ranked from smallest to largest:

[φ] =




φ1
...

φk
...

φN




=




X∗1,1
X∗1

· · · X∗1,12
X∗1

...
. . .

...
X∗k,1
X∗k

· · ·
X∗k,12
X∗k

...
. . .

...
X∗N,1
X∗N

· · ·
X∗N,12
X∗N




(4.7)

where X∗k represents the kth annual flow such that X∗k−1 ≤ X∗k ≤ X∗k+1, and X∗k,j the monthly flows of that

year.

In Figure 4.2, a typical fragment for Mainland Portugal is presented as an example. The sum of its values

is, evidently, equal to one.

The classes of fragments are defined by the clustering of annual flows with similar values, and they may or

may not have a constant amplitude. In the state of the art involving the method of fragments, there is no
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known rule for the number and size of classes to adopt, which constitutes a source of ambiguity concerning

the utilization of the method.

φk = Xk,j/Xk

Month
Oct Nov Dec Jan Frb Mar Apr May Jun Jul Aug Sep

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Figure 4.2: Example of a fragment for Mainland Portugal

Arsénio (2003) implemented the method of fragment to generate synthetic series of daily flows, having

performed a sensitivity analysis involving different criteria for the definition of the classes of fragments. As

a result Arsénio (2003, p. 84) suggested that the definition of the classes of fragments be made by trial and

error until an assembly of fragments is found that leads to a more effective preservation of the statistics of the

samples. However, that suggestion was not followed in the procedure developed for this dissertation, not only

because it would require an individual analysis of each one of the more than fifty streamflow samples (which

amounts to a very time-consuming process), but also because what was intended in the research carried out

in this dissertation was to apply the same procedure to all the streamflow samples, and to make a global

evaluation of said procedure.

A number of alternate approaches for defining the classes of fragments was devised and compared, in terms

of robustness regarding the preservation of the statistical parameters of the samples and its ability to be

automated, the one that proved best considers the classes of fragments defined as probability intervals. The
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procedure applied is as follows:

1. Consideration of a series of nine equally spaced non-exceedance probabilities of the annual streamflow,

Fm (m = 1, ..., 9), with an increment of 10%, that is: F1 = 10%; F2 = 20%; ...;F9 = 90%.

2. Estimation of the annual flows, X̆m, pertaining to the aforementioned non-exceedance probabilities,

by inverting the probability distribution function of the log-Pearson III law, attending to the sta-

tistical characteristics of each sample - Equations (4.2) and (4.3) - followed by the inversion of the

logarithmic transformation. This results in ten equally probable classes with limits represented by

[0, X̆1[, [X̆1, X̆2[, [X̆2, X̆3[, ..., [X̆8, X̆9[, [X̆9,+∞[.

3. Distribution of the fragments among the successive classes, while simultaneously verifying if there are

any empty classes. In case each class has at least one fragment, the procedure for the definition of the

classes is complete and one can proceed to the monthly disaggregation model, otherwise one needs to

take the next additional step.

4. Redefinition of empty classes:

• If the first class is empty, it is included in the next class, by changing its upper limit to the value

of [0, X̆2[. If it remains empty, it is included it in the next class and so on and so forth.

• If the last class is empty, it is included in the previous class, by changing the lower limit to the

value of [X̆8,+∞[. If it remains empty, it is included in the previous class and so on and so forth.

• If an intermediate class, [X̆m, X̆m+1[, is empty, half of the probability step that the defines

this class is attributed to the two bordering classes. This results in that the three original

classes [X̆m−1, X̆m[, [X̆m, X̆m+1[, [X̆m+1, X̆m+2[ are substituted by the following two new ones

[X̆m−1, X̆∂ [, [X̆∂ , X̆m+1[ where X̆∂ is the estimate of the annual flow with a non-exceedance proba-

bility that is the mean of the probability limits of the eliminated class. If the class remains empty,

the process is repeated by attributing half of the probability interval to the bordering classes and

consequently redefining these bordering classes’ limits.

After the classes of fragments are defined, and having previously generated the synthetic series of annual

flows, the method for generating the monthly flows proceeds with the identification, for each year i of the

synthetic annual flow series, X̂i, of the class to which that annual flow belongs - class m + 1 such that

X̂i ∈
[
X̆m, X̆m+1

[
.

The next step is to select the fragment φi to be used to disaggregate the annual flow X̂i. If the class to which

the previous step refers has only one fragment, said fragment is selected. Otherwise, that is, if the class

has two or more fragments, the fragment is randomly selected, in accordance with the following procedure,

provided that those fragments are sorted from smallest to largest value of the corresponding annual flows:
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i A single random number ξ between zero and one is generated using the Matlab built-in function

RAND,which uses the PRNG Mersenne Twister algorithm by Nishimura and Matsumoto, and draws

numbers from a uniform distribution (MathWorks, 2008). The initial set of this PNGR is reset at the

beginning of the generation model for each streamflow sample, to the seed numbers shown in Table 4.1.

ii The selected fragment number, that is, the number of order of the fragment in the class, is the integer

part (floor) of the following operations: ξ nfrags + 1, where nfrags designates the number of fragments

in the class.

The random selection of a fragments from a class with more than one fragment is done without replacement

until the class runs out of fragments. When this happens, the class is refilled with the respective fragments.

Each generated annual flow, X̂i, is disaggregated into generated monthly flows in accordance with the fol-

lowing system:

[
X̂i,1 X̂i,2 · · · X̂i,11 X̂i,12

]
=

[
Xi,1

Xi

Xi,2

Xi
· · · Xi,11

Xi

Xi,12

Xi

]
X̂i (4.8)

which, for the purpose of simplifying the notation, will also be designated by:

X̂i,j = φiX̂i (4.9)

where i = 1, 2, ..., N and j = 1, 2, ..., 12.

The disaggregation procedure is repeated until M N -year synthetic streamflow series, with an annual and

monthly time-step, are generated:

X̂
(m)
i,j = φ

(m)
i X̂

(m)
i (4.10)

where, as before, the indices i and j refer to the year and the month, respectively; X̂
(m)
i represents the

mth synthetic series of annual flows; X̂
(m)
i,j , the corresponding synthetic series of monthly flows; and φi, the

fragment used to disaggregate X̂
(m)
i , being, in all cases, m = 1, 2, ...,M . As aforementioned, the adopted

total number, M , of synthetic monthly series of N years was 1200, as indicated by (Guimarães, 2005, p. 175).

The method of fragments has a limitation that should be mentioned: when one wants to disaggregate a

generated annual flow volume that is smaller than the smallest volume of the sample, or larger than the largest

volume of the sample, the available fragments are only the ones on the first or the last class, respectively.

This limitation may reduce the variability of the within-the-year distribution of the synthetic monthly flow

series, as pointed out by (Guimarães, 2005, p. 46).

4.1.4 Assessment of the quality of the generated series

The quality of generation and disaggregation models was evaluated by comparing the synthetic series with

the samples in terms of the main historical statistics, as described in Section 2.4.1. The comparison utilized

41



confidence levels, computed by Equation (2.18).

At the annual level the model generates logarithms of the random variable (annual flow volumes), hence, the

statistics to be used when appraising the quality of the model refer to the logarithms, namely the means,

standard deviations and skewness coefficients of the logarithms of annual flows. However, an additional

analysis was carried out by comparing the statistics of the random variable itself (annual streamflows, in this

case).

At the monthly level, the analyzed statistics were again the means, standard deviations and skewness coeffi-

cients of the monthly flows in each month of the hydrologic year.

At both temporal levels, a confidence level of 1− α = 95% was adopted for the confidence intervals.

4.2 Reservoir storage-yield analyses

The estimation of the storage volumes used the simulation algorithm described in Section 2.3.2 which is based

on the application of the mass balance equation (Equation 2.8) to compute the reservoir storage capacity.

This method is suited to make a behaviour analysis of the performance of a reservoir, that is, one can allow

the water supply to be less than the demanded volume and apply a number of different criteria to analyze

the performance of the reservoir in meeting such demand.

The algorithm applies Equation (2.8) to simulate the state of the storage based on a continuous streamflow

series combined with a known or assumed demand, precipitation over the surface of the reservoir and water

loss.

The application of this method aims to obtain an estimate of the reservoir storage capacity. This has to be

done iteratively: first an initial estimate of the reservoir capacity, C, is assumed and the initial condition of

the reservoir (initial water content) is decided; a simulation using the time series data is accomplished and

the performance of the reservoir is computed; if the performance is unsatisfactory, then a new estimate of the

capacity is made and the simulation is repeated; iterations are then carried out until the estimated capacities

fulfill the desired level of performance.

The performance criterion considered in the procedure was the time-based reliability RT (Equation 2.10), in

part because it is the most common criterion, but also because it has a monotonic behaviour when the storage

varies and the demand is fixed, or vice versa, as was exemplified in Item 2.3.3. For the purpose of avoiding

misinterpretation involving the different concepts of reliability mentioned in this research, the time-based

reliability will be represented by the acronym ER - empirical reliability, as discussed in Item 2.3.4.

The procedure did not consider the variations in storage due to precipitation over the reservoir, losses by

evaporation, or other losses (apart from the spill that occur when the reservoir is full) which were neglected.
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Given these conditions, the mass balance equation becomes:

St+1 = St +Qt −Dt (4.11)

where St is the storage, Qt is the inflow (directly taken from the streamflows, X), and Dt is the demanded

volume, all at the instant t, and t takes a monthly time-step, and the restriction 0 ≤ St+1 ≤ C is made.

Furthermore, the simulations carried out followed the assumptions:

• The initial storage condition is that of a full reservoir (S1 = C).

• The demand is fixed and uniform during the year, being defined by a given percentage of the mean

annual flow of the streamflow series, D
Q

.

• The simulation does not handle storage dependent processes, that is, no adjustment is made to the

demand in case the water level in the reservoir falls below a certain level.

• The simulation does not consider any sedimentation in the reservoir, that is, the storage capacity of

the reservoir does not vary in time.

The following exemplifies the storage-yield analysis based on the simulation model applied to the streamflow

records at the Moinho do Bravo (2) gauging station (sample no.10) with a recording period of 14 years (168

months) and a mean annual flow volumes of 41624 dam3. The desired empirical reliability, ER, is of 90%,

and the desired draft, i.e. the demand expressed as a percentage of the mean annual inflow volume uniformly

distributed over 12 months, is 60%.

The analysis was carried out using a monthly time-step, as described. Because the desired empirical reliability,

ER, is 90%, the iterative process will stop when the estimated storage capacity leads to an operation in which

only 10% of the months will see restrictions on water use. However, 10% of the months does not equal an

integer number of months (0.9× 168 = 151.2), this means that the problem does not have an exact solution

because ER can never be exactly 90%; hence ER should be formally described as 90%±ε where ε is an error.

In this case ε = |151−151.2|
168 × 100 = 0.12%. The goal can then be understood as finding the smallest storage

capacity that leads to a reservoir operation in which only 168− 151 = 17 of the 168 months have restrictions

applied to the water supply.

Figure 4.3 shows the behaviour diagram, that is, the fluctuation of water in storage during the period of

operation. The reservoir is empty on two occasions, for a total of 17 months. The estimated storage capacity

is 45914.73 dam3.

The storage capacity is then represented as a percentage of the mean annual flow volume of the time series.

This normalized quantification of the storage estimate is denominated specific storage. For the purpose
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of simplifying the notation, the specific storage will be designated the fraction C
Q

, albeit representing a

percentage. Likewise, the draft will be represented by D
Q

.

For the present example, C
Q

= 110.31%

Volume of water in storage, St (hm
3)
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Figure 4.3: Behaviour diagram of a hypothetical reservoir on the Moinho do Bravo gauging station.

The storage-yield analyses were carried out considering:

• values of empirical reliability, ER, of 100% (full supply), 95%, 90%, and 80%;

• values of the draft,
D

Q
, of 90%, 80%, 60%, 50%, 40%, and 20%.

The procedure exemplified based on the Moinho do Bravo gauging station was applied to the 54 streamflow

samples, each resulting in one estimate of the reservoir specific storage capacity, C
Q

, for each combination of

the values of ER and of D
Q

. Estimates of the vulnerability, η, and the resilience, ϕ, as defined by Equations

(2.12) and (2.13), respectively, were also computed.

Furthermore, the procedure was applied to the 1200 synthetic flow series relative to each streamflow sample,

resulting in 1200 estimates of the reservoir specific storage capacity
(
C
Q

)(m)

, with m = 1, 2, ..., 1200, for each

combination of the values of ER and of D
Q

. The resulting total number of behaviour analyses carried out was

near 1.6 Million.

It should be stressed that the behavioural analyses applied to each synthetic flow series at each specific

gauging station considered that the mean annual flow volume, Q, used in the adimensionalization of the

demanded draft, D
Q

, and of the specific storage, C
Q

, was the one pertained to that series, thus differing

among synthetic series and also differing from the historical sample.
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4.3 Establishment of design curves

A large number of estimates of the specific storage capacity of a reservoir enables the application of a statistical

analysis to define the design storage capacity, as illustrated in Figure 2.9 (although it is not expressed in the

mentioned figure, the storage capacity C, may be expressed in a dimensionless form, as the specific storage,

C
Q

). Under this understanding, and taking into account the previous research carried out on reservoir storage

in Portuguese rivers (see Item 2.3.5), it is expected that the results of the behavioural analyses applied to a

large number, M , of synthetic streamflow series, would allow for the following relationship to be established:

Ω

(
C

Q
,
D

Q
,ER, TR,H

)
= 0 (4.12)

where TR is the theoretical reliability, understood as a theoretical non-exceedance probability of the specific

storage, and the remaining variables have the same meaning as in Equation (2.14).

For the purpose of applying a statistical analysis to the results of the storage-yield analyses, the mean, µ, and

standard deviation, σ, of each sample of 1200 estimates of the specific storage, C
Q

, were estimated according

to Equations (A.1) and (A.2) in Appendix A.

According to (Ribeiro, 1996, p. 79) and (Guimarães, 2005, p. 83), the distribution that better fits a large

number of estimates of storage capacities of reservoirs is the Gumbel distribution. The probability factor of

the Gumbel distribution is given by the following equation:

KG = −
√

6

π

{
0.5772 + ln

[
ln

(
1

F

)]}
(4.13)

where F is the non-exceedance probability.

Then the specific storage capacity associated with a determined value of F may be estimated by:

C

Q
= µ+KGσ (4.14)

where, for each river station, µ and σ are the mean and the standard deviation of the 1200 estimates of C
Q

,

as previously mentioned.

The values of the theoretical probability, TR considered in the statistical analyses that were carried out were

99%, 95%, 90%, and 80%.

In accordance with the curves developed by Portela & Quintela (2006a,b), which express the specific reservoir

storage capacity as a function of the mean annual flow depth, H, for each combination of values of ER, TR,

and D
Q

(a total of 96 possible combinations), equations of the type of Equation (2.15) were obtained with

significant correlation coefficients.
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5 Results and discussion

5.1 Assessment of the quality of the generated streamflow series

5.1.1 Previous considerations

As described in Item 4.1, for each of the gauging stations presented in Table 3.1, a two-level streamflow

generation model was applied to generate 1200 synthetic annual and monthly streamflow series with an

average length close to 35 years.

The results of the models at both temporal levels were evaluated in terms of the capacity of the generated

synthetic series to preserve the main statistical characteristics of the corresponding samples. This assessment

is made by comparing the synthetic series with the samples in terms of the main historical statistics, as

described in Section 2.4.1. The comparison utilized confidence levels, computed by Equation (2.18).

In this analysis, diagrams were obtained which contain the relative position of the limits of the aforementioned

confidence intervals, and the estimated samples’ statistics.

A confidence level of 1− α = 95% was adopted for the confidence intervals.

5.1.2 Results at the annual level

The generation of the annual streamflows takes place in the domain of the logarithmic transforms of the

random variable (annual streamflows), hence, the confidence intervals and the samples’ statistics to be used

when appraising the quality of the model refer to the logarithms, namely the means, standard deviations and

skewness coefficients of the logarithms of annual flows.

Figure 5.1, on the next page, displays the representation of those confidence intervals, together with the

values of the samples’ statistics. As a way of simplification, those values are referred to as historical values.

In the figure, each sample is identified in the horizontal axis by the number attributed in Table 3.1.

The analysis of Figure 5.1 reveals that, for every sample, the historical values of the statistics are contained

within the corresponding confidence intervals.
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Figure 5.1: Confidence intervals at 95% of the means (top), the standard deviations (center), and the
skewness coefficients (bottom) of the logarithms of annual streamflows. Comparison with the historical

values of the same statistics.

An additional analysis was made by obtaining similar diagrams but in the domain of the random variable

itself (the annual streamflow, in this case). However the representation of such diagrams in a single figure

is not feasible due to the huge amplitude of the values of the means and of the standard deviations when

referred to flow units (see Table 3.2 for the observed flow).

Notwithstanding this limitation, the appraisal of the preservation of the aforementioned statistical charac-

teristics, however estimated on the basis of the annual flows themselves, showed that the inversion of the

logarithmic transformation did not compromise the preservation of the means, of the standard deviations, or

even, in the majority of the cases, of the skewness coefficient of the annual streamflows. In fact, the only case

where the skewness coefficients was not preserved was the Flor da Rosa gauging station (sample no. 18).
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Such results, along with those pertained to the logarithms of streamflows, are summarized in Table 5.1 which

specifies the samples (identified by the numbers designated in Table 3.1) whose statistics were not preserved

by the generation model.

Table 5.1: Results of the analysis of the preservation of the annual streamflow samples’ statistical
characteristics: samples - identified by the numbers designated in Table 3.1 - whose means, standard

deviations, and skewness coefficients were not preserved by the respective synthetic series.

Variable
Statistic

Mean Standard deviation Skewness coefficient

Logarithm of the
annual streamflow

– – –

Annual streamflow – – 18

5.1.3 Results at the monthly level

At the monthly level, the analyzed statistics were again the means, standard deviations and skewness coeffi-

cients of the monthly flows in each month of the hydrologic year.

It should be mentioned that the calculation of the skewness coefficients was not always possible due to the

fact that, in some samples, the flow in a certain month is null in every year of the record. This is the case of

the monthly flows in September and August at Couto de Andreiros and Vidigal gauging stations (Samples no.

11 and 13), respectively. Furthermore, the disaggregation process generated a number of synthetic monthly

flow series of N years that present months with null flows in every year. In these cases it is also impossible to

estimate the skewness coefficient. In order to standardize the procedures, if null flows in one or more months

always occur in one or more of the 1200 synthetic series generated from a given sample, the confidence interval

of the skewness coefficients of the flows in those months were not established, and therefore the analysis of the

preservation of the skewness coefficient of monthly flows is not made in such months. Table 5.2 specifies the

months (16 in total) that are in this situation. It should, however, be stressed that, apart from the skewness

coefficient, the analysis of the preservation of the means and standard deviations focused on 54 × 12 = 648

samples of monthly flows, a number that, for the skewness coefficient is thus reduced to 632.

The application of the models at the monthly level showed that, for all 54 analyzed samples, the means of

the monthly flow were always preserved. The standard deviations and the skewness coefficients were not

preserved in a total of 3 months and 10 months, respectively.

Figures 5.2 to 5.4, on page 51, exemplify the confidence intervals and the historical values of the analyzed

statistics of the monthly flows in Albernoa, Açude Saimilo and Covas (samples no. 1, 37 and 54). These

gauging stations were selected as an example because they display values of the mean annual flow depth, H,

that are somewhat representative of the lower, medium, and high values in Mainland Portugal: 90.4, 633.8

and 2214.1 mm, respectively.
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Table 5.2: Cases where the preservation of the skewness coefficient of flows was not analyzed in one or more
months

Sample No.
Gauging station Months where the preservation of the

Code Name skewness coefficient was not analyzed a

2 27J/01 Monte da Ponte August

5 24H/03 Torrão do Alentejo August

8 25G/02 Moinho do Bravo (1) July; August

9 24I/01 Odivelas August; September

11 18L/01 Couto de Andreiros July; August; September

13 30F/02 Vidigal August; September

15 31K/03 Bodega September

17 29L/01 Monte dos Fortes September

19 28L/02 Vascão September

21 30G/01 Mte. dos Pachecos August; September
a The months written in bold indicates that the historical flow in that month was null

in every year of that sample.

The remaining results of the analysis at the monthly level are displayed in Table 5.3 which specifies the

samples (identified by the numbers designated in Table 3.1), and months whose statistics were not preserved

by the generation and disaggregation models. It should be clarified that the months which were not subjected

to the analysis of the preservation of the skewness coefficient (Table 5.2) do not take part in the analysis

underlying Table 5.3.

Table 5.3: Results of the analysis of the preservation of the streamflow samples’ statistical characteristics:
samples - identified by the numbers designated in Table 3.1 - whose means, standard deviations, and

skewness coefficients were not preserved by the respective synthetic series.

Month
Statistic

Mean Standard deviation Skewness coefficient

October – 8; 35 17

November – – –

December – – 15

January – – 30; 35

February – – –

March – – –

April – – 44

May – – 9; 18

June – – –

July – – –

August – 18 –

September – – 20; 23; 51

The results represented in Figures 5.1 to 5.4, and the ones contained in Tables 5.1 and 5.3, clearly show

that, generally, the proposed methodology for generating annual and monthly synthetic streamflow series

accurately preserves the main statistical characteristics of the historical streamflow records in Portuguese

rivers. Hence, the inclusion of that methodology in studies concerning the design of the storage capacities of

artificial reservoirs in Mainland Portugal is validated.
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Figure 5.2: Confidence intervals at 95% of the means, the standard deviations, and the skewness coefficients
of the monthly flows in Albernoa (sample no. 1).
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Figure 5.3: Confidence intervals at 95% of the means, the standard deviations, and the skewness coefficients
of the monthly flows in Açude Saimilo (sample no. 37).
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Figure 5.4: Confidence intervals at 95% of the means, the standard deviations, and the skewness coefficients
of the monthly flows in Covas (sample no. 54).
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5.2 Results of the storage-yield analyses

5.2.1 General remarks

The results from the storage-yield analyses have two different underlying conditions: either they were ob-

tained directly from the historical streamflow samples or they resulted from the synthetic streamflow series.

Therefore the presentation of such results was organized into separate items, according to the underlying

condition of the streamflow series.

Another remark concerns the use of Equation (2.15). Along the presentation of the results there are references

of curves resulting from that equation. Though it might by omitted, it should be stressed that the parameters

of those curves were obtained be linear regression analysis applied to the logarithmic transforms of the

variables that appear in Equation (2.15), followed by the inversion of the logarithmic transformation.

5.2.2 Reservoir vulnerability and resilience

5.2.2.1 Results based on historical streamflow samples

As discussed in Item 2.3.3, the reservoir performance metrics vulnerability, η, and resilience, ϕ, defined by

Equations (2.12) and (2.13), respectively do not have a monotonic behaviour with an increasing storage

capacity for a fixed yield, or vice-versa, as is exemplified by Figure 2.6. Therefore it was not feasible to

use either of these metrics as a stopping criterion on the storage-yield procedure described in Item 4.2.

Nevertheless it is possible to compute the values of those metrics when the stopping condition (defined by

the empirical reliability, ER) is reached. However, their values can only be estimated for ER < 100%,

because their calculation presupposes the existence of shortages in the water supply.

For the 54 streamflow samples (historical data), Figure 5.5 shows the relationship between the vulnerability,

η, and the mean annual flow depth, H, for the empirical reliabilities, ER, of 95%, 90% and 80% and the

target drafts of 20% to 90%. The analysis of this figure shows that, generally, under the same operation

conditions regarding the target draft and the reliability of the supply, the vulnerability of reservoirs decreases

as the mean annual flow depth increases. This trend is particularly visible for empirical reliabilities of 90%

and 80%. It should be noted that for H > 500 mm there is no case where the vulnerability is 1.0, this

means that if H > 500 mm, the water supply is never zero, for the considered reliability-draft combinations.

Furthermore, although the lower estimates of the vulnerability occur in the ER = 95% graph, the same

graph contains higher estimates of vulnerability, particularly for H > 500 mm, than the ER = 80% graph,

therefore increasing reliability does not always reduce vulnerability.
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Figure 5.5: Relationship between the reservoir vulnerability estimates, η, and the mean annual flow depth,
H. Results based on the 54 historical streamflow samples, for fixed empirical reliabilities, ER, of 95%, 90%

and 80%, and target drafts, D
Q

, from 20% to 90%.
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Figure 5.6 shows the relationships between the reservoir resilience, ϕ, and the mean annual flow depth, H, of

each of the 54 samples, again for the empirical reliabilities, ER, of 95%, 90% and 80% and the target drafts

of 20% to 90%. The analysis of this figure suggests that the resilience of a reservoir is more determined by

the reliability of the supply than by the mean annual flow depth. The figure shows that the estimates of the

resilience tend to increase as ER increases, being that this trend is more visible for low values of the draft.
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Figure 5.6: Relationship between the reservoir resilience estimates, ϕ, and the mean annual flow depth, H.
Results based on the 54 historical streamflow samples, for fixed empirical reliabilities, ER, of 95%, 90% and

80%, and target drafts, D
D

, from 20% to 90%.
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In Figure 5.7 the vulnerability estimates are plotted against the resilience estimates. Linear regressions were

made to establish the dashed lines that best fit the estimates, for each reliability-draft combination. The

figure shows the two metrics, resilience and vulnerability, have an approximately complementary relationship.
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Figure 5.7: Comparison of vulnerability and resilience estimates. Results based on the 54 historical
streamflow samples, for fixed empirical reliabilities, TR, of 95%, 90% and 80%, and target drafts, D

Q
from

20% to 90%.
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Figure 5.8 displays the line of best fit of all the estimates shown in Figure 5.7. The line is defined by the

equation η = 1.03− 0.96ϕ (cc = −0.808), which is similar to the lines obtained by McMahon et al. (2006).

The results of Figures 5.7 and 5.8 show that the relationship between the vulnerability and resilience per-

formance metrics is not very linear in Portuguese rivers, therefore, both metrics should be estimated during

proper storage-yield analyses.

η = 1.03− 0.96ϕ (c.c. = −0.808)
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Figure 5.8: General relationship of the vulnerability and resilience estimates based on the 54 historical
streamflow samples.

5.2.2.2 Results based on synthetic streamflow series

The estimates of the performance metrics resilience and vulnerability were also computed when applying

the storage-yield procedure described in Item 4.2 to the generated synthetic streamflow series. In order to

understand if the results concerning those two performance metrics based on historical data was consistent

with the results based on the generated data, the comparisons pertained to Figures 5.5 to 5.8 were carried

out using the mean estimates based on the generated streamflow series.

The relationships between those metrics and the mean annual flow depth of the streamflow samples are show

in Figures 5.9 for the vulnerability and 5.10 for the resilience, on pages 57 and 58, respectively.

56



 

 

20%

40%

50%

60%

80%

90%

V
u
ln
er
ab

il
it
y,

η
(-
)

H (mm)

ER = 80%

V
u
ln
er
ab

il
it
y,

η
(-
)

H (mm)

ER = 90%

V
u
ln
er
ab

il
it
y,

η
(-
)

H (mm)

ER = 95%

Draft,
D

Q

0 500 1000 1500 2000 2500

0 500 1000 1500 2000 25000 500 1000 1500 2000 2500

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.9: Relationship between the reservoir vulnerability estimates, η, and the mean annual flow depth,
H. Mean results based on the generated synthetic streamflow samples, for fixed empirical reliabilities, ER,

of 95%, 90% and 80%, and target drafts, D
Q

, from 20% to 90%.
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Figure 5.10: Relationship between the reservoir resilience estimates, ϕ, and the mean annual flow depth, H.
Mean results based on the generated synthetic streamflow samples, for fixed empirical reliabilities, ER, of

95%, 90% and 80%, and target drafts, D
Q

, from 20% to 90%.
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Figure 5.11 presents the relationships, by means of the points, but also of the lines of best fit, between the

resilience and vulnerability estimates for empirical reliabilities, ER, of 95%, 90% and 80% and target drafts

of 20% to 90%.
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Figure 5.11: Comparison of vulnerability and resilience estimates. Mean results based on the generated
synthetic streamflow samples, for fixed empirical reliabilities, ER, of 95%, 90% and 80%, and target drafts,

D
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, from 20% to 90%.
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The general relationship between the mean estimates of resilience and vulnerability based on generated data

is presented in Figure 5.12, which includes the equation that expresses the line of best fit to all the estimates:

η = 1.07− 1.05ϕ (c.c. = 0.889). This line is consistent with the one of Figure 5.8 and with those obtained by

McMahon et al. (2006) (Figure 2.7).

η = 1.07− 1.05ϕ (c.c. = −0.889)
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Figure 5.12: General relationship of the vulnerability and resilience estimates. Mean results based on the
generated synthetic streamflow series.

It is apparent that the results based on the generated data are consistent with those based on historical

data. Hence the generated synthetic streamflow series accurately reproduce the behaviour of hypothetical

reservoirs, given the same operation conditions. These comparisons constitute an additional validation of

the two-level streamflow generation procedure proposed in Item 4.1, in view of its application to reservoir

storage-yield studies.
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5.2.3 Reservoir capacity design curves

5.2.3.1 Comment on the results

Figure 5.13 presents an overview of the results achieved in this item, illustrating how they are interconnected,

regarding the underlying nature of the data that supports them (be it historical or synthetic) as well as the

treatments applied to such results, in accordance with the procedures described in Items 4.2 and 4.3.

5.2.3.2 Curves based on historical streamflow samples

As mentioned in Item 4.2, the specific storage capacities, C
Q

, of hypothetical reservoirs at the gauging stations

of Table 3.1, were estimated, based on historical data, considering empirical reliabilities, ER, of 100%,

95%, 90%, and 80%, and target drafts, D
Q

, of 20% to 90% of the mean annual inflow. The estimated

specific storage capacities are related to the mean annual flow depth of the streamflow samples, H, with

significant correlations, which is consistent with the results obtained by Portela & Quintela (2002a,b, 2006a,b).

Accordingly, curves defined by Equation (2.15) were fitted to the estimates of the specific storage capacities

for several different values of ER and D
Q

.

For the historical samples, Figures 5.14 (for D
Q

= 90%, 80%, and 60%) and 5.15 (for D
Q

= 50%, 40%, and

20%), on pages 63 and 64, respectively, show the points that express the relationship between H and C
Q

as

well as the curves provided by linear regression analysis based on Equation (2.15). It should be stressed that

the regression analysis was carried out not in the domain of the variables themselves but instead of their

logarithmic transforms, as stated in Item 5.2.1.

Table 5.4, on page 65, contains the parameters of the fitted curves, α and β (see equation 2.15), as well as

the correlation coefficients, c.c., for each empirical reliability-draft combination, based on the storage-yield

procedure applied to the historical samples.

The correlation coefficients obtained in Table 5.4 demonstrate that the relationship between the specific

storage, C
Q

, and the mean annual flow depth, H, becomes more evident when the operation conditions of the

reservoirs become more tolerant regarding failures in the supply (lower values of the empirical reliability) and

less demanding on the natural inflow regime (lower values of the target draft, D
Q

); consequently, when the

operation conditions become more demanding and stringent (higher values of the empirical reliabilities and

of the draft), the correlation coefficients become less significant.
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Figure 5.14: Specific storage estimates, C
Q

, based on the 54 streamflow samples for the empirical

reliabilities, ER, of 80% to 100%, and target drafts, D
Q

, of 90%, 80% and 60%. Curves defined by linear

regression applied to the logarithms of Equation (2.15).
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Figure 5.15: Specific storage estimates, C
Q

, based on the 54 streamflow samples for the empirical

reliabilities, ER, of 80% to 100%, and target drafts, D
Q

, of 50%, 40% and 20%. Curves defined by linear

regression applied to the logarithms of Equation (2.15).
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Table 5.4: Results of the storage-yield analyses applied to the historical streamflow samples. Parameters α
and β and correlation coefficients, c.c., of the curves defined by Equation (2.15) for different values of the

empirical reliability, ER, and the target draft, D
Q

.

ER (%)
D

Q
(%) α β c.c.

100

90 1367.4 -0.281 -0.548
80 1702.3 -0.374 -0.658
60 2124.0 -0.515 -0.760
50 2054.7 -0.565 -0.785
40 2086.2 -0.635 -0.800
20 1576.0 -0.789 -0.815

95

90 1759.8 -0.390 -0.672
80 2333.9 -0.503 -0.761
60 3084.7 -0.668 -0.838
50 2687.8 -0.710 -0.851
40 2065.2 -0.739 -0.863
20 1024.3 -0.823 -0.867

90

90 1831.0 -0.457 -0.744
80 2286.6 -0.557 -0.811
60 2207.0 -0.668 -0.860
50 1542.6 -0.671 -0.860
40 1109.1 -0.689 -0.882
20 685.6 -0.811 -0.861

80

90 1409.4 -0.515 -0.848
80 1208.9 -0.544 -0.861
60 787.1 -0.577 -0.874
50 663.0 -0.606 -0.888
40 557.3 -0.647 -0.887
20 1387.2 -1.026 -0.830

In item 3 it was mentioned that the data set utilized by Portela & Quintela (2006a,b) consisted of streamflow

records in most of the same gauging stations utilized in the data set of the current research, albeit with slightly

shorter recording periods. Many of the curves obtained in Figures 5.14 and 5.15 are directly comparable with

the ones obtained by those authors. Figure 5.16 illustrates the aforementioned comparison of fitted curves,

for empirical reliabilities, ER, of 95%, 90%, and 80% and target drafts, D
Q

, of 90%, 50% and 20%.

The two sets of curves in Figure 5.16 are almost coincident, although some differences are visible for higher

values of empirical reliability and draft, these differences should be explained by the shorter length of some

of the observed streamflow series utilized by Portela & Quintela (2006a,b). As those authors noted, under

more stringent operation conditions, a higher number of years would be necessary to fully characterize the

restrictions on water supply. The samples utilized in the present research partially overcome this situation

as they are longer. Despite the previous remarks, the results now obtained clearly reinforces the conclusions

stated by those authors and also the hypothesis that the mean annual flow depth is capable of describing the

storage needs of flow regulating reservoirs with significant correlation in Portuguese rivers.
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Figure 5.16: Target drafts, D
Q

, of 90%, 50% and 20%: curves defined by Equation (2.15) with the

parameters α and β contained in Table 5.4 (solid curves) and equivalent curves obtained by Portela &
Quintela (2006a,b) (dotted curves).
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5.2.3.3 Curves based on synthetic streamflow series

Although the curves of Figures 5.14 and 5.15, or Equation (2.15) with the parameters of Table 5.4, constitute

justifiable criteria for the preliminary design of the storage capacities of reservoirs in Portuguese rivers, it

should be stressed that, for each set of values of C
Q

, D
Q

and ER, they were obtained on the basis of a single

estimate of the specific storage for each gauging station, the one provided by the historical sample of

streamflows. As discussed in Item 2.3.4, when evaluating the storage requirements of a reservoir, a historical

sample of monthly streamflows constitutes a single event, therefore it cannot result in more than one estimate

of the reservoir storage capacity, and, accordingly, it should not be adopted as design criteria. Under this

understanding, the reservoir storage-yield analyses carried out utilizing the 1200 synthetic streamflow series

generated for each streamflow sample, as described in Item 4.2, resulted in the same number of specific

storage estimates, which, in turn, could be assessed by means of statistical analysis tools.

To evaluate how accurately the generated streamflow series reproduce storage needs of reservoirs in Portuguese

rivers, the results of the storage-yield analyses based on the generated data were compared with those of the

analyses based on the observed data. That comparison was made by plotting the curves obtained by applying

Equation (2.15) to the means of the 1200 specific storage estimates, obtained for the 54 samples, over the

curves of Figures 5.14 and 5.15. The comparison of the two sets of curves is exemplified in Figure 5.17 for the

target drafts, D
Q

, of 90%, 50% and 20%. It should be noted that the mean results correspond to a theoretical

reliability, TR, of nearly 57%, because the probability factor of the Gumbel distribution (Equation 4.13) is

null for F ≈ 0.57.

Figure 5.17 shows that for the same operation conditions the two sets of curves are almost coincident, although

for higher values of the draft and reliability they may differ slightly. The comparison between the two sets of

curves shows that the results based on generated data are consistent with the mean results based on historical

data. Hence, that figure also provides a further confirmation of the adequacy of the proposed streamflow

series generation model, in view of its inclusion in studies regarding reservoir storage design.

Table 5.5, on page 69, contains the parameters α and β and the correlation coefficients c.c. of the curves defined

by Equation (2.15) fitted to the mean estimates based on generated data. For each empirical reliability-draft

combination, the correlation coefficients shown in that table are generally greater than the ones of Table

5.4 (using the historical data), which suggests that the effect of averaging such a large number of synthetic

estimates accentuates the relationship between the specific storage of the reservoirs and the mean annual

flow depth.
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Figure 5.17: Curves defined by applying Equation (2.15) to: the mean results based on generated
streamflows (dashed curves with the parameters shown in Table 5.5; the streamflow samples (solid curves

with the parameters shown in Table 5.4).
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Table 5.5: Mean results (TR ≈ 57%) of the storage-yield analyses applied to the synthetic streamflow
series. Parameters α and β and correlation coefficients, c.c. of the curves defined by Equation (2.15) for

different values of empirical reliability, ER, and target draft, D
Q

.

ER (%)
D

Q
(%) α β c.c.

100

90 2162.1 -0.353 -0.713
80 2454.9 -0.430 -0.800
60 2399.0 -0.537 -0.862
50 2224.0 -0.585 -0.872
40 2004.5 -0.637 -0.876
20 1239.6 -0.753 -0.863

95

90 3024.0 -0.476 -0.841
80 3557.6 -0.567 -0.882
60 3385.2 -0.683 -0.901
50 2774.6 -0.716 -0.898
40 2023.3 -0.736 -0.891
20 860.2 -0.795 -0.870

90

90 3169.1 -0.542 -0.878
80 3304.2 -0.612 -0.897
60 2442.0 -0.682 -0.902
50 1740.1 -0.689 -0.894
40 1161.2 -0.692 -0.887
20 624.8 -0.793 -0.862

80

90 2232.4 -0.580 -0.891
80 1867.5 -0.604 -0.895
60 1099.3 -0.625 -0.895
50 810.9 -0.634 -0.893
40 637.1 -0.664 -0.892
20 1022.1 -0.969 -0.841

Table 5.6, shows the parameters α and β, and the correlation coefficients, c.c., of the curves defined by

Equation (2.15) fitted to the results of the statistical analysis applied to the large number of estimates of the

specific storage, for the theoretical reliabilities, TR, of 99%, 95%, 90% and 80%. As previously presented

(Item 4.3), for each draft, D
Q

and empirical reliability, ER, the computation of the specific storage capacities,

C
Q

, for a given theoretical reliability, TR, requires the adjustment of a statistical law. For that purpose

the Gumbel law was adopted. In such understanding, each theoretical reliability represents a theoretical

non-exceedance probability, the corresponding value of the specific storage capacity being provided by the

inversion of the probability distribution function of the above mentioned law.

Suppose that by means of the previous analysis the following results were achieved: C
Q

= 150%, for D
Q

= 80%

and ER of 95%, with a TR of 90%. This would mean that to fulfill a draft of 80% of the mean annual inflow

volume, with an operation rule that only tolerates restrictions to the supply in 100− 95 = 5% of the months

of the service life, a storage capacity of 150% of the same mean annual inflow volume would be needed. The

probability of that storage requirement not being exceeded is 90%, which means that there is an underlying

probability of 10% of non-fulfillment of the envisaged performance.
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Table 5.6: Results of the storage-yield analyses applied to the synthetic streamflow series. Parameters α
and β and correlation coefficients, c.c. of the curves defined by Equation (2.15) for different values of

theoretical reliabiliy, TR, empirical reliability, ER, and target draft, D
Q

.

ER (%)
D

Q
(%)

TR = 99%
ER (%)

D

Q
(%)

TR = 95%
α β c.c. α β c.c.

100

90 4223.6 -0.358 -0.725

100

90 3388.1 -0.357 -0.722
80 5151.9 -0.446 -0.821 80 4055.5 -0.442 -0.816
60 5601.7 -0.572 -0.882 60 4285.4 -0.563 -0.878
50 5112.2 -0.618 -0.887 50 3925.3 -0.609 -0.884
40 4586.1 -0.669 -0.885 40 3518.9 -0.660 -0.885
20 3692.7 -0.830 -0.879 20 2617.1 -0.807 -0.879

95

90 6944.7 -0.495 -0.845

95

90 5344.1 -0.490 -0.844
80 10064.7 -0.625 -0.887 80 7326.1 -0.609 -0.887
60 13872.6 -0.813 -0.898 60 9055.9 -0.777 -0.901
50 13688.7 -0.884 -0.893 50 8419.0 -0.835 -0.898
40 11760.8 -0.940 -0.891 40 6845.3 -0.879 -0.894
20 4813.6 -1.004 -0.875 20 2821.4 -0.942 -0.877

90

90 9705.9 -0.614 -0.879

90

90 6917.6 -0.595 -0.881
80 12391.6 -0.725 -0.896 80 8329.4 -0.694 -0.899
60 13376.6 -0.874 -0.901 60 7969.8 -0.818 -0.904
50 10841.6 -0.911 -0.898 50 6166.1 -0.845 -0.900
40 7280.8 -0.922 -0.892 40 4106.2 -0.853 -0.894
20 2384.8 -0.948 -0.873 20 1559.6 -0.901 -0.875

80

90 9302.5 -0.721 -0.885

80

90 6039.8 -0.681 -0.890
80 9018.7 -0.780 -0.893 80 5575.8 -0.729 -0.897
60 5580.6 -0.823 -0.894 60 3356.1 -0.763 -0.897
50 3744.0 -0.821 -0.890 50 2305.9 -0.764 -0.894
40 2360.4 -0.818 -0.890 40 1551.0 -0.770 -0.894
20 1528.1 -0.966 -0.875 20 1318.6 -0.966 -0.870

ER (%)
D

Q
(%)

TR = 90%
ER (%)

D

Q
(%)

TR = 80%
α β c.c. α β c.c.

100

90 3019.3 -0.356 -0.720

100

90 2634.8 -0.355 -0.717
80 3572.5 -0.439 -0.813 80 3070.2 -0.436 -0.808
60 3710.4 -0.557 -0.875 60 3116.8 -0.550 -0.871
50 3406.8 -0.604 -0.882 50 2871.6 -0.597 -0.879
40 3055.0 -0.655 -0.884 40 2578.2 -0.648 -0.882
20 2173.4 -0.794 -0.878 20 1736.0 -0.778 -0.874

95

90 4641.1 -0.487 -0.844

95

90 3912.1 -0.483 -0.843
80 6151.8 -0.600 -0.887 80 4960.2 -0.588 -0.886
60 7148.4 -0.755 -0.902 60 5333.1 -0.728 -0.903
50 6436.7 -0.808 -0.899 50 4622.2 -0.772 -0.900
40 5085.9 -0.845 -0.895 40 3532.5 -0.803 -0.895
20 2107.9 -0.907 -0.877 20 1476.7 -0.863 -0.876

90

90 5735.1 -0.583 -0.881

90

90 4546.8 -0.568 -0.881
80 6677.3 -0.675 -0.900 80 5073.1 -0.651 -0.900
60 5986.7 -0.786 -0.905 60 4206.5 -0.746 -0.905
50 4526.1 -0.808 -0.900 50 3099.4 -0.761 -0.899
40 3007.2 -0.814 -0.894 40 2058.5 -0.766 -0.893
20 1241.1 -0.875 -0.874 20 942.3 -0.843 -0.871

80

90 4753.7 -0.658 -0.892

80

90 3534.3 -0.628 -0.893
80 4276.8 -0.700 -0.898 80 3085.2 -0.663 -0.899
60 2546.8 -0.730 -0.898 60 1821.5 -0.689 -0.899
50 1776.5 -0.732 -0.896 50 1296.9 -0.694 -0.896
40 1239.6 -0.744 -0.895 40 947.7 -0.712 -0.896
20 1226.9 -0.966 -0.865 20 1132.8 -0.967 -0.857
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The correlation coefficients in Table 5.6 show that the dependency between the specific storage estimates

associated with a given probability of non-exceedance, or theoretical reliability, TR, and the mean annual

flow depth of the historical sample are significant. Furthermore, these results validate the use of a large

number of synthetic streamflow series to design the storage capacities of artificial reservoirs.

In order to illustrate how the curves defined by the parameters in Table 5.6 relate to the curves previously

presented in the document, Figures 5.18 (for ER = 80% and D
Q

= 40%) and 5.19 (for ER = 95% and

D
Q

= 80%), included in pages 72 and 73 respectively, exemplify the relative position of the specific storage

estimates, C
Q

, using the observed streamflow records, and the curves defined by the parameters showed in

Tables 2.2, 5.4, 5.5, and 5.6, in this last case for TR = 80% and 95% only.

The juxtaposition of the different sets of curves of each Figure 5.18 and 5.19 illustrate that the curves

established on the basis of historical streamflow data are concurrent, as a design criteria, with

the curves obtained previously by Portela & Quintela (2006a,b) and with those supported by

the mean results based on generated data, as was previously discussed. The curves established on

the basis of a statistical analysis applied to the large number of specific storage estimates resulting from the

synthetic streamflow series (defined by the parameters in Table 5.6) have an additional underlying principle

- the possibility of the non-fulfillment of the demanded supply associated with a given empirical reliability.

Therefore, the application of the latter curves as design criterion produces more conservative, i.e. higher,

storage capacity estimates, for the same operating condition and desired performance.

When applying the curves defined by the parameters in Table 5.6, the considered theoretical reliability, TR,

should be proportionate to the relative importance of the reservoir system being designed. Evidently, if one

is carrying out the preliminary design of a reservoir system of critical importance, one should adopt a higher

standard regarding the theoretical reliability.

It should be pointed out that as the mean annual flow depth increases, and consequently, as the streamflow

regime becomes more regular, the storage capacities provided by statistical approaches tend to be closer to

those resulting from the historical data.
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TR = 95%

TR = 80%

Mean results based on the generated data

Curve obtained by Portela & Quintela (2006b)

Curve fitted to the estimates based on historical samples
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Figure 5.18: Empirical reliability, ER, of 80% and target draft, D
Q

, of 40%. Relative position of estimates of

the specific storage of reservoirs and different design curves defined by liner regression on the logarithms
Equation (2.15)
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Mean results based on the generated data

Curve obtained by Portela & Quintela(2006b)
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ER = 95% and D
Q

= 80%

C

Q
(%)

H (mm)

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

Figure 5.19: Empirical reliability, ER, of 95% and target draft, D
Q

, of 80%. Relative position of estimates of

the specific storage of reservoirs and different design curves defined by liner regression on the logarithms
Equation (2.15)
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It is believed that the results contained in Table 5.6 may be directly applied to the preliminary design of a

reservoir created by a dam in a Portuguese river, to evaluate:

i the storage capacity that insures the steady supply of a given annual volume of water, with a desired

performance and a given reliability1;

ii the annual volume that, for a given storage capacity and reliability, is possible to supply with a desired

performance;

iii the performance of a steady supply of a desired annual volume, from a reservoir with a given storage

capacity, and a given reliability;

iv the reliability associated with the non-exceedence of the storage capacity of a reservoir that provides a

steady supply of a given annual volume with a desired performance.

The curves defined by the parameters presented in Table 5.6 constitute, therefore, a quick and useful tool

that may be applied, at a preliminary level, to the planning and management of water resources systems

involving the supply of water from a reservoir in Mainland Portugal.

1Here, the term “performance” refers to empirical reliability, and the term “reliability” refers to theoretical reliability.
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6 Conclusions and future developments

In this dissertation a regional study was carried out on the design of the storage capacities of artificial

reservoirs in Mainland Portugal.

The study follows previous research carried out on the design of the storage capacities of reservoirs in

Portuguese rivers that concluded that the mean annual flow depth, H, is a powerful parameter for the

regionalization of hydrometric data, capable of characterizing the irregularity of the natural streamflow

regimes and the storage requirements of reservoirs. However, the previous available results did not account

for the intrinsic stochastic nature of the stremaflows. For this reason, the research carried out in this

dissertation encompassed an extensive generation and utilization of synthetic streamflow data.

A procedure for generating synthetic annual and monthly streamflow series was developed and tested, in-

tegrating a probabilistic generation model at the annual level, and a disaggregation model - the method of

fragments - at the monthly level. The procedure was applied to 54 streamflow samples from 53 gauging

stations geographically spread over Mainland Portugal. A total of 22440 monthly flow records were collected,

analyzed and utilized to generate nearly 27 million monthly streamflows.

The probabilistic model used for generating annual streamflows, which is based on a random sampling

of the log-Pearson III law of probability, proved to be robust. The application of the model resulted in

the preservation of the statistics of the historical samples, although those samples exhibit quite different

statistical characteristics among them. This is due to the versatility of the log-Pearson III law, conferred

by its three parameters. Since the statistical model generates logarithms of annual flows, the occurrence of

synthetic negative streamflows is naturally avoided.

The method of fragments also proved to be appropriate to disaggregate annual streamflows into monthly

streamflows. The procedure developed to automatically define the classes of fragments, which proved to lead

to good results, completely eliminates any uncertainty in the establishment of those classes, thus increasing

the robustness and generality of the disaggregation model.

The verification that, in general, the proposed two-level generation model accurately preserves the main

statistical characteristics of the historical streamflow samples, confirms the adequacy of the procedure for

generating synthetic series of annual and monthly streamflows.
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A reservoir storage-yield procedure, based on the simulation algorithm, was applied to both the historical

streamflow samples, and the synthetic streamflow series, for different empirical reliabilities and uniform water

demands. The following is a summary of the conclusions achieved:

• By extensively using synthetic flows series the studies carried out are much more general than the pre-

vious ones on the subject as they account for the stochastic nature of the flow regime in the Portuguese

rivers.

• Also, additional performance measures besides the empirical reliability, namely vulnerability and re-

silience, were computed and compared regarding the evaluation of the reliability of the water supplies

based on artificial reservoirs in Portuguese rivers.

• Given certain operation conditions (fixed draft and empirical reliability), as the mean annual flow

depth decreases, the reservoirs become increasingly more vulnerable to failure, i.e., the magnitude of

the shortage in the water supply increases as the inflows become more irregular.

• Given certain operation conditions, as the mean annual flow depth increases, the reservoirs become

increasingly more resilient, i.e., they recover from a failure more rapidly as the inflows become less

irregular.

• Regardless of the operation conditions, the vulnerability and resilience of a reservoir tend to display a

complementary relationship, which suggests that more resilient reservoirs tend to be less vulnerable,

and vice-versa.

• As the mean annual flow depth increases, for a given operation condition, the storage requirements of

a reservoir decreases, and vice-versa.

• A comparison of the results obtained using, primarily, historical data, and, subsequently, synthetic

data, provided a proof of the adequacy of the proposed streamflow generation model, in view of its

inclusion in studies regarding reservoir storage design.

• A large number of storage estimates may be subjected to statistical analysis with the objective of

estimating the reliability (expressed as a theoretical non-exceedance probability) associated with a

specific storage capacity.

The previous conclusions are consistent with the ability of the mean annual flow depth to characterize the

streamflow variability in Portuguese rivers.

The obtained results made possible the establishment of curves that enable the estimation of the specific

storage of reservoirs in Portuguese rivers, as a function of the mean annual flow depth, with significant

correlations, for different reliabilities and performance levels. The correlation coefficients obtained for these
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curves constitute an additional evidence of the aptitude of the mean annual flow depth also to assess the

storage requirements of reservoirs.

It is believed that the obtained curves may be applied directly, at preliminary stages of studies involving

water resources systems planning and evaluation, to the design of the storage capacities of artificial reservoirs.

Hence, they constitute a useful and expeditious tool for the management of water resources in Mainland

Portugal.

Although the proposed methodology was applied to hydrometric data from gauging stations in Portuguese

rivers, it is believed that in other European regions, specifically in the South of Europe, analogous procedures

may by developed with the objective of obtaining similar curves that are susceptible of being applied in those

countries.

In terms of future developments a challenge remains concerning the assessment of non-uniform water demands,

such as the seasonal demands required by agriculture. Furthermore, as the available streamflow samples

increase, be it in number as well as in length, as long as the rivers remain unregulated, the procedures

presented in this dissertation should be periodically implemented and their results updated. Evidently, when

carrying out this updating, one should repeat the tests of independence in time and test the additional

streamflow samples in order to detect possible trends or other signs of climate change, and to re-evaluate the

effect of such trends on the overall performance of reservoirs.
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Hı́dricos. Geração de Séries Sintéticas de Escoamento. Ph.D. thesis, Universidade de Évora, Évora.
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Appendix A

Basic statistical parameters

The statistical representation of a univariate series of N random variables, xt, is based on a set of statistics,

or statistical parameters. The following is a presentation of the definition and formulae adopted in the

dissertation of the most relevant statistics.

1 The mean, x, is a measure of central tendency:

x =
1

N

N∑

t=1

xt (A.1)

2 The standard deviation, s, is a measure of the degree to which the data spreads about the mean value.

The unbiased estimation of this parameter is obtained by:

sx =

√√√√ 1

N − 1

N∑

t=1

(xt − x)2 (A.2)

3 The coefficient of variation, CV , is a dimensionless measure of relative variability:

CV =
sx
x

(A.3)

4 The skewness coefficient, g, is a measure of the asymmetry of the distribution of the values of xt. The

unbiased estimation of this parameter is obtained by:

g(x) =
N

(N − 1)(N − 2)s3x

N∑

t=1

(xt − x)3 (A.4)

5 The lag-k autocovariance, ck, is a measure of the degree of self-dependence of a time-series. The

autocovariance ck between xt and xt+k is obtained by:

ck =
2

N

N−k∑

t=1

(xt − x)(xt+k − x), 0 ≤ k < N (A.5)
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6 The lag-k autocorrelation coefficient is a dimensionless measure of linear dependence. this statistic is

obtained by dividing ck of Equation (A.5) by c0:

rk =
ck
c0

=

N−k∑

t=1

(xt − x)(xt+k − x)

N∑

t=1

(xt − x)2

(A.6)
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